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Traditionally, the regression analysis for competing risks survival 

time is based on the cause-specific hazard that treat failures from 

causes other than the cause of interest as censored observations.  

That includes technique such as the Cox proportional hazard 

model.  The modelling of hazard rate may or may not match the 

objective of investigator.  It is often more desirable to investigate 

the subdistribution function, because cause-specific hazard 

doesn’t obviously give the information about proportion of 

individuals experiencing a cause of interest.   Furthermore, the 

subdistribution and cause-specific hazard function are not 

interchangeable.  Thus, if we intended to draw inference from 
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subdistribution function, then we must model on subdistribution 

function directly or indirectly. 

 

Sometimes, we do not only intend to investigate the relationship 

between response and covariates through regression analysis, but 

also we want to identify the presence of subgroup of individuals in 

our data.  We could then utilize tree-structured regression for this 

purpose. 

 

In this thesis, we developed statistical methods for competing risks 

data analysis through direct, indirect and parametric 

subdistribution modelling.  Indirect model is employed via hazard 

of subdistribution.  Evaluation of the performance of proposed 

methods is conducted through series of simulation studies as well 

as real data application. 

 

We developed four methods: 1) a method to categorize 

continuous covariate by considering the competing risks 

survival time outcome variables, called outcome-oriented 

categorization method, 2) a tree-structured competing risks 

regression to extract meaningful sub-groups of subjects 

determined by the value of covariates, 3)  a hybrid model which 

boost the available subdistribution hazards regression by 
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augmenting it with tree-structured regression resulted from the 

previous step, 4) two kinds of parametric direct subdistribution 

model.  These models are constructed based on non-mixture 

cure model.  The first model is developed by taking into account 

the  fraction of individuals who did not experience the event of 

interest in the long term.  The second model is developed by 

reparameterizing the first model in order to mimic Gompertz 

distribution which allows no immune fraction.  

 

Research finding is as follows: 1) Method of outcome-oriented 

categorization based on deviance statistic is the best.  The 

application of the method to contraceptive discontinuation data 

showed good result. 2) Regression tree for competing risks data 

can uncover the structure of data and yield the sub-group of 

individuals with a clear description based on their covariates.  

The application of the method to contraceptive discontinuation 

data showed good result.  Extensive Monte Carlo simulation 

suggests the method has good performance in identifying the 

structure of data.  3) Application of the hybrid model to the 

contraceptive discontinuation data showed that the hybrid 

model is better than the available subdistribution regression in 

terms of AIC.  4) By using some well known kernel distribution, 

the parametric direct subdistribution models are developed.  The 
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maximum likelihood estimations are carried out simultaneously 

for all causes of event.  In Bone Marrow Transplantation (BMT) 

data analysis, the first proposed model gave noticeably good fit 

to the nonparametric counterpart.   The second proposed model 

is fitted to contraceptive discontinuation data and showed that 

Gompertz-like subdistribution with Gompertz kernel is the best 

fit. 
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Analisis regresi bagi masa mandirian dengan risiko bersaing 

biasanya berdasarkan kepada bahaya sebab-spesifik yang 

memperlakukan kegagalan kerana peristiwa bersaing sebagai 

tertapis.  Ianya termasuk teknik seperti model bahaya berkadaran 

Cox.  Pemodelan kadar bahaya mungkin atau tidak mungkin 

sesuai dengan tujuan penyelidik.  Sering kali diinginkan untuk 

menyelidiki fungsi subtaburan, disebabkan fungsi bahaya sebab-

spesifik tidak memberikan maklumat yang jelas tentang kadar dari 

individu yang mengalami punca yang diperhatikan.   Tambahan 

pula, fungsi subtaburan dan fungsi bahaya sebab-spesifik tidak 

boleh ditukarganti.  Dengan demikian, jika kita bermaksud 
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melakukan pentakbiran fungsi subtaburan, maka kita perlu 

melakukan pemodelan bagi fungsi subtaburan.   

 

Kadang-kala, kita tidak hanya bermaksud untuk menyelidiki 

hubungan antara pembolehubah bersandar dengan pembolehubah 

peramal, tetapi juga kita ingin mengenali kehadiran subkumpulan 

individu dalam data.  Kita dapat menggunakan regresi 

berstruktur-pepohon untuk maksud ini. 

 

Dalam tesis ini, kami membina kaedah berstatistik bagi analisis 

data risiko bersaing melalui pemodelan subtaburan langsung, 

tidak langsung dan berparameter.  Model tidak langsung dibina 

melalui bahaya subtaburan.  Penilaian prestasi dari kaedah yang 

dicadangkan dilakukan melalui simulasi dan penerapan data 

nyata.   

 

Kami membina empat kaedah: 1) kaedah untuk mengkategori 

pembolehubah selanjar dengan mempertimbangkan 

pembolehubah bersandar masa mandirian risiko bersaing yang 

disebut dengan kaedah pengkategorian berorientasi kesudahan,  

2) regresi risiko bersaing berstruktur pepohon untuk 

memaparkan subkumpulan individu yang bermakna yang 

ditentukan oleh nilai-nilai pembolehubah peramal, 3) model 
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hibrid yang memperkembangkan regresi bahaya subtaburan 

yang sedia ada dengan penambahan regresi berstruktur 

pepohon yang dihasilkan pada langkah terdahulu, 4) dua jenis 

model subtaburan langsung berparameter.  Model-model 

berkenaan dibina berdasarkan model pulih tak campur.  Model 

pertama dibina dengan mempertimbangkan pecahan individu 

yang tidak mengalami peristiwa yang diperhatikan dalam 

penggal yang panjang (pecahan imun).  Model kedua adalah 

pemparameteran dari model pertama agar menyerupai taburan 

Gompertz yang membenarkan tiada pecahan imun.   

 

Penemuan-penemuan dari disertasi ini adalah: 1) Kaedah 

pengkategorian berorientasi kesudahan berdasarkan statistik 

devians adalah yang terbaik.  Penerapan dari kaedah ini untuk 

data pemutusan alat pencegah kehamilan menunjukkan hasil 

yang baik. 2) Regresi pepohon bagi data risiko bersaing dapat 

menggali struktur data dan menghasilkan subkumpulan individu 

yang mempunyai gambaran yang jelas berdasarkan nilai-nilai 

pembolehubah peramalnya.  Penerapan kaedah ini pada data 

pemutusan alat pencegah kehamilan menunjukkan hasil yang 

baik.  Simulasi Monte Carlo memperlihatkan bahwa kaedah ini 

mempunyai prestasi yang baik dalam mengenali struktur data. 3) 

Penerapan model hibrid pada data pemutusan alat pencegah 
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kehamilan menunjukkan bahwa ianya lebih baik daripada regresi 

subtaburan sedia ada. 4) Pembinaan model subtaburan langsung 

berparameter dilakukan dengan menggunakan beberapa taburan 

kernel yang sudah dikenali.  Penganggaran kebolehjadian 

maksimum dilakukan secara serentak bagi semua punca 

peristiwa.  Dalam analisis data pencedungan sumsum tulang, 

model pertama yang dicadangkan memberikan lengkung suaian 

yang baik terhadap tandingan tak berparameternya.   Model kedua 

disuaikan pada data pemutusan alat pencegah kehamilan dan 

menunjukkan bahwa subtaburan seakan Gompertz dengan kernel 

Gompertz adalah yang terbaik. 

 



 x 

ACKNOWLEDGEMENTS 

 

In The Name of ALLAH, The Most Merciful and Most Beneficent 
 

All praises do to Allah, Lord of the universe. Only by His grace and 

mercy this thesis can be completed. 

 

This work was carried out with a hope to contribute towards the 

expansion of our currently limited knowledge on survival data 

analysis. The completion of this thesis would have been impossible 

if not for the assistance and direct involvement of so many 

kindhearted individuals. Thus, I am very much indebted to my 

previous mentors and I have no way of repaying such a debt except 

to express my sincerest gratitude. 

 

First and foremost, I am very grateful to my adviser Assoc. Prof. Dr. 

Hj. Noor Akma Ibrahim, for her strong support, guidance, and 

patience for the very enriching and thought provoking discussions 

and lectures which helped to shape the thesis.  She was always 

there to provide everything I needed in the laboratory.  I would also 

like to thank her for providing financial support during the period 

of my study through IRPA research fund and Fundamental 

Research Grant Scheme. 

 



 xi 

I am also grateful to Assoc. Prof. Dr. Mohd. Rizam Abu Bakar and 

Assoc. Prof. Dr. Isa Daud in their capacities as members of 

Supervisory Committee. Thank you for the comments and 

suggestions, which contributed a lot towards the improvement of 

the final manuscript. I am also indebted to the staff of the Institute 

for Mathematical Research, Universiti Putra Malaysia for their help 

and cooperation. 

 

Special thanks are extended to Dean of Fakultas Matematika dan 

Ilmu Pengetahuan Alam (FMIPA) and Rector of Universitas Islam 

Bandung who allowed me to study at the PhD level. Special thanks 

are also extended to other INSPEM’s postgraduate room members 

who helped me in every way possible.  Acknowledgement is also 

extended to Indonesian Student Association (PPI-UPM) that joined 

us in sweet friendship and made life easier during my stay in 

Malaysia.  

 

I wish to express my deepest gratitude to my parents, brothers and 

sisters for their prayers, continuous moral support and unending 

encouragement. Last but not least, I wish especially to 

acknowledge my beloved wife, Rela Umul Hasanah, and my dearest 

daughter Haifa Qathrunnada for their love, support, patience and 

understanding. 



 xii 

I certify that an Examination Committee met on 25th August 2008 
to conduct the final examination of Abdul Kudus on his Doctor of 
Philosophy thesis entitled “Tree-structured and Direct Parametric 
Regression Models for the Subdistribution of Competing Risks” in 
accordance with Universiti Pertanian Malaysia (Higher Degree) Act 
1980 and Universiti Pertanian Malaysia (Higher Degree) 
Regulations 1981. The Committee recommends that the student be 
awarded the Doctor of Philosophy. 
 
Members of the Examination Committee were as follows: 
 
Malik bin Hj. Abu Hassan, PhD 
Professor 
Faculty of Science  
Universiti Putra Malaysia  
(Chairman) 
 
Habshah Midi, PhD  
Associate Professor 
Faculty of Science  
Universiti Putra Malaysia  
(Internal Examiner)  
 
Kassim Haron, PhD 
Associate Professor 
Faculty of Science  
Universiti Putra Malaysia  
(Internal Examiner)  
 
M. Ataharul Islam, PhD   
Professor 
Department of Statistics 
University of Dhaka 
Bangladesh 
(External Examiner) 
 
 

 
 
__________________________________ 
HASANAH MOHD. GAZALI, PhD 
Professor and Dean 
School of Graduate Studies 
Universiti Putra Malaysia 
 
Date: 29 January 2009 



 xiii 

 
This thesis was submitted to the Senate of Universiti Putra 
Malaysia and has been accepted as fulfilment of the requirement 
for the degree of Doctor of Philosophy. The members of the 
Supervisory Committee were as follows: 
 
 
Noor Akma Ibrahim, PhD 
Associate Professor 
Institute for Mathematical Research  
Universiti Putra Malaysia  
(Chairman)  
 
Isa Daud, PhD 
Associate Professor 
Faculty of Science  
Universiti Putra Malaysia  
(Member) 
 
Mohd. Rizam Abu Bakar, PhD 
Associate Professor 
Faculty of Science 
Universiti Putra Malaysia  
(Member) 
 
 
 
 
 
 

 
 
________________________________ 
HASANAH MOHD. GAZALI, PhD 
Professor and Dean 
School of Graduate Studies 
Universiti Putra Malaysia 
 
Date: 12 February 2009 

 
 
 
 
 
 
 



 xiv 

 
DECLARATION 

 
 
 

I declare that the thesis is my original work except for quotations 
and citations which have been duly acknowledged. I also declare 
that it has not been previously, and is not concurrently, submitted 
for any other degree at Universiti Putra Malaysia or at any other 
institution. 
 
 
 
 

 
 
 
 

ABDUL KUDUS 

   Date: 24 November 2008 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xv 

 
 

TABLE OF CONTENTS 

 
 Page 
ABSTRACT ii 
ABSTRAK vi 
ACKNOWLEDGEMENTS x 
APPROVAL xii 
DECLARATION xiv 
LIST OF TABLES xviii 
LIST OF FIGURES xxi 
LIST OF ABBREVIATIONS xxvi 
  
CHAPTER  
  
1 INTRODUCTION 1 
 1.1 Background 1 
 1.2 Mathematical Formulation of Competing Risks 4 
 1.3 Scope 7 
 1.4 Problem Statements 8 
 1.5 Research Objectives 19 
 1.6 Outline of the Thesis 21 
  
2 LITERATURE REVIEW 25 
 2.1 Competing Risks    26 
 2.2 Modelling Based on Subdistribution  38 
  2.2.1 Hypothesis Testing for Comparison 

across Population 
 

39 
  2.2.2 Hypothesis Testing Based on Regression 

Models 
 

40 
 2.3 Outcome-oriented Cutpoint Determination 

Methods 
41 

  2.3.1 Cutpoint Determination Based on Two-
sample Statistic 

 
42 

  2.3.2 Cutpoint Determination Based on 
Regression Model 

 
44 

 2.4 CART 45 
 2.5 Survival Trees 47 
 2.6 Multivariate Survival Trees 51 
 2.7 Tree-augmented Regression Trees 53 
 2.8 Parametric regression for Competing Risks 53 
 2.9 Literature Review Summary 55 
    
 



 xvi 

3 OUTCOME-ORIENTED CUTPOINT DETERMINATION 
METHODS FOR COMPETING RISKS 

 
57 

 3.1 Cutpoint Determination Method via Two-sample 
Statistic 

 
64 

 3.2 Cutpoint Determination Method via Regression 
Analysis 

 
66 

  3.2.1 Cutpoint with Maximum Value of Wald 
Statistic 

 
67 

  3.2.2 Cutpoint with Maximum Value of 
Likelihood Ratio Statistic (Minimum 
Deviance) 

 
68 

  3.2.3 Cutpoint with Maximum Value of Delta 
Deviance 

 
69 

  3.2.4 Cutpoint with Maximum Value of Delta 
Null Deviance 

 
70 

 3.3 Simulation on Cutpoint Determination 70 
  3.3.1 Data Generation 71 
  3.3.2 Censored Data Generation 74 
  3.3.3 Statistical Indicators for Assessing the 

Performance of Cutpoint Determination 
Methods 

 
 

78 
  3.3.4 Simulation Results 84 
 3.4 Application: Contraceptive discontinuation data 88 
  3.4.1 Optimal Cutpoint 89 
  3.4.2 Permutation Test 91 
  3.4.3 Bootstrap Confidence Interval 95 
 3.5 Summary 99 
    
4 TREE-STRUCTURED REGRESSION FOR 

SUBDISTRIBUTION OF COMPETING RISKS 
 

101 
 4.1 Growing a Large Tree 103 
  4.1.1 The Splitting Statistic 103 
  4.1.2 Algorithm to Grow Tree 107 
 4.2 Algorithm to Prune Tree 108 
 4.3 Data Analysis 110 
  4.3.1 Subdistribution Hazard Regression 110 
  4.3.2 Regression Trees for Subdistribution 

Hazard 
 

113 
 4.4 Simulation Studies 124 
 4.5 Summary 137 
5 HYBRID MODEL FOR SUBDISTRIBUTION OF 

COMPETING RISKS 
 

129 
 5.1 Hybrid Competing Risks Regression Model 131 
  5.1.1 Model Structure 131 
  5.1.2 Algorithm of Hybridization 133 
 



 xvii 

 5.2 Example: Contraceptive Discontinuation Data 135 
 5.3 Summary 145 
    
6 PARAMETRIC REGRESSION FOR 

SUBDISTRIBUTION OF COMPETING RISKS BASED 
ON NON-MIXTURE CURE MODEL 

 
 

146 
 6.1 Parametric Subdistribution 149 
  6.1.1 Univariate Model 149 
  6.1.2 Regression Model 152 
 6.2 Maximum Likelihood Estimation 153 
 6.3 Simulation 157 
 6.4 Application to Bone Marrow Transplant (BMT) 

Data 
 

161 
  6.4.1 Univariate Models for Leukemia Patients 161 
  6.4.2 Regression Models for Leukemia Patients 166 
 6.5 Parametric Gompertz-like Subdistribution 169 
  6.5.1 Univariate Gompertz-like Subdistribution 

Model 
 

170 
  6.5.2 Parametric Regression with Gompertz-

like Subdistribution Model 
 

173 
 6.6 Application to Contraceptive Discontinuation 

Data 
 

173 
 6.7 Summary 184 
     
7 SUMMARY, GENERAL CONCLUSION AND 

RECOMMENDATION FOR FUTURE RESEARCH 
 

187 
 7.1 Summary 187 
 7.2 Direction for Further Research 192 
    
REFERENCES 194 
APPENDICES 204 
BIODATA OF STUDENT 227 
LIST OF PUBLICATIONS 228 
     
 



 xviii 

LIST OF TABLES 
 

 
 
Table    Page 
     
3.1  Scenario for comparing five cutpoint 

determination methods 
   71 

3.2  Parameter for simulating censored data for 
comparison of cutpoint determination with p = 
0.66 

                 

77 

3.3  The comparison of mean of the estimated 
cutpoints determined by five cutpoint 
determination methods based on 1000 
simulations and true cutpoint equal to 51 under 
selected relative risks (exp(βγ) = 2, 5), sample 
sizes (n = 20, 200, 2000) and censoring 
percentage (pc = 0%, 25%, 50%) 

  

 

 

80 

3.4  The comparison of bias of the estimated 
cutpoints determined by five cutpoint 
determination methods based on 1000 
simulations and true cutpoint equal to 51 under 
selected relative risks (exp(βγ) = 2, 5), sample 
sizes (n = 20, 200, 2000) and censoring 
percentage (pc = 0%, 25%, 50%) 

  

 

 

81 

3.5  The comparison of absolute relative estimated 
bias of the estimated cutpoints determined by 
five cutpoint determination methods based on 
1000 simulations and true cutpoint equal to 51 
under selected relative risks (exp(βγ)=2, 5), 
sample sizes (n = 20, 200, 2000) and censoring 
percentage (pc = 0%, 25%, 50%) 

  

 

 

82 

3.6  The comparison of standard errors of the 
estimated cutpoints determined by five cutpoint 
determination methods based on 1000 
simulations and true cutpoint equal to 51 under 
selected relative risks (exp(βγ) = 2, 5), sample 
sizes (n = 20, 200, 2000) and censoring 
percentage (pc = 0%, 25%, 50%). 

  

 

 

83 

 
 
 



 xix 

     
3.7  The comparison of root mean square errors of 

the estimated cutpoints which were determined 
by five different cutpoint determination methods 
based on 1000 simulations and true cutpoint 
equal to 51 under selected relative risks 
(exp(βγ)=2, 5), sample sizes (n = 20, 200, 2000) 
and censoring percentage (pc = 0%, 25%, 50%) 

  

 

 

84 

3.8  Overall rank sum for five cutpoint determination 
methods. 

   87 

4.1  Subdistribution hazard regression for 
contraceptive discontinuation data 

   
112 

4.2  Simulation result on investigating the capability 
in identifying data structures of 1000 repetitions 

   
127 

5.1  Variable descriptions for contraceptive 
discontinuation data 

   
136 

5.2  Dummy variables conversion  136 

5.3  The best subdistribution hazards regression 
for discontinuation due to failure 

   
137 

5.4  The hybrid regression for discontinuation due 
to failure 

   
139 

5.5  The best subdistribution hazards regression 
for discontinuation due to abandonment 

   
140 

5.6  The hybrid regression for discontinuation due 
to abandonment 

   
141 

5.7  The best subdistribution hazards regression 
for discontinuation due to switching 

   
142 

5.8  The hybrid regression for discontinuation due 
to switching 

   
144 

6.1  Kernel distribution and the resulted 
subdistribution for three distributions 

   
151 

6.2  Simulation result on the efficiency of the 
parameter estimates 

   
160 

6.3  Summary of the fitting results  165 



 xx 

6.4  Parameter estimates (standard errors) for the 
BMT data 

   
167 

6.5  Result of fitting Gompertz-like subdistribution 
with exponential kernel to contraceptive 
discontinuation data 

          

175 

6.6  Result of fitting Gompertz-like subdistribution 
with Weibull kernel to contraceptive 
discontinuation data 

    

177 

6.7  Result of fitting Gompertz-like subdistribution 
with Gompertz kernel to contraceptive 
discontinuation data 

    

178 

6.8  Regression of contraceptive discontinuation 
using Gompertz-like subdistribution with 
exponential kernel 

    

181 

6.9  Regression of contraceptive discontinuation 
using Gompertz-like subdistribution with 
Weibull kernel 

    

182 

6.10  Regression of contraceptive discontinuation 
using Gompertz-like subdistribution with 
Gompertz kernel 

    
 

183 
 



 xxi 

LIST OF FIGURES 
 

Figure    Page 
2.1  The competing risks model  31 

     
2.2  The unequivalency between cause-specific 

hazard and subdistribution 
  

39 
     

3.1  The cutpoint determination based on 
deviance 

 60 

     
3.2  Data partition based on cutpoint γ  65 

     
3.3  Simulation result in term of bias for 

eighteen scenarios 
  

85 
     

3.4  Simulation result in term of standard error 
(SE) for eighteen scenarios 

  
86 

     
3.5  Simulation result in term of root mean square 

error (RMSE) for eighteen scenarios 
  

87 
     

3.6  The plot of cutpoint criterion D for 
dependent variable time to occurrence of 
failure against cutpoint on age.  D bottoms 
at age 34.167 years. 

  
 
 

90 
     

3.7  The plot of cutpoint criterion D for dependent 
variable time to occurrence of abandonment 
against cutpoint on age.  D bottoms at age 38 
years. 

  
 
 

90 
     

3.8  The plot of cutpoint criterion D for dependent 
variable time to occurrence of switching 
against cutpoint on age.  D bottoms at age 38 
years. 

  
 
 

91 
     

3.9  Permutation plot of the sequence of Db for time 
to occurrence of failure as dependent variable, 
b = 1, …, 1000. 

  
 

93 
     

3.10  Permutation plot of the sequence of Db for time 
to occurrence of abandonment as dependent 
variable, b = 1, …, 1000. 

 94 

 



 xxii 

3.11  Permutation plot of the sequence of Db for time 
to occurrence of switching as dependent 
variable, b = 1, …, 1000. 

  
 

95 
     

3.12  Histogram of 1000 bootstrap replications of 
the optimal cutpoint γ̂  on age at start of 
contraceptive use for the discontinuation due 
to failure 

  
 
 

98 
     

3.13  Histogram of 1000 bootstrap replications of 
the optimal cutpoint γ̂  on age at start of 
contraceptive use for the discontinuation due 
to abandonment 

  
 
 

98 
     

3.14  Histogram of 1000 bootstrap replications of 
the optimal cutpoint γ̂  on age at start of 
contraceptive use for the discontinuation due 
to switching 

  
 
 

99 
     

4.1  Initial tree for discontinuation due to failure 
(node size, split and corresponding deviance 
statistic) 

  
 

115 
     

4.2  Nested subtrees of Segal’s pruning for 
discontinuation due to failure (point label is 
internal node number) 

  
 

116 
     

4.3  Final tree for discontinuation due to failure  116 
     

4.4  Failure subdistribution curve for 4 groups of 
women 

  
117 

     
4.5  Initial tree for discontinuation due to 

abandoning (node size, split and 
corresponding deviance statistic) 

  
 

118 
     

4.6  Nested subtrees for abandoning risk (point 
label is internal node number) 

 119 

     
4.7  Final tree for discontinuation due to 

abandoning 
 120 

 
 
 
 
 



 xxiii 

4.8  Subdistribution function of abandoning for 2 
groups of women 

  
120 

     
4.9  Subdistribution function of abandoning for 3 

groups of women after breaking down node 2 
into node 4 and node 5 

  
121 

     
4.10  Initial tree for discontinuation due to 

switching (node size, split and corresponding 
deviance statistic) 

  
 

122 
     

4.11  Nested subtrees for switching risk (point label 
is internal node number) 

  
123 

     
4.12  Final tree for discontinuation due to switching  124 

     
4.13  Subdistribution of switching curve for 3 

groups of women 
  

124 
     

4.14  True tree for simulation  125 
     

4.15  Part of true tree  126 
     

5.1  The large initial augmentation tree for 
discontinue due to failure 

  
137 

     
5.2  Nested subtrees of Segal’s pruning for the 

augmentation trees (first risk, discontinuation 
due to failure) 

  
 

138 
     

5.3  The final augmentation tree for discontinue 
due to failure 

  
139 

     
5.4  The large initial augmentation tree for 

discontinue due to abandonment 
  

140 
     

5.5  Nested subtrees of Segal’s pruning for the 
augmentation trees (second risk, 
discontinuation due to abandonment) 

  
 

141 
5.6  The final augmentation tree for discontinue 

due to abandonment 
  

141 
     

5.7  The large initial augmentation tree for 
discontinue due to switching 

  
143 

 
 



 xxiv 

5.8  Nested subtrees of Segal’s pruning for the 
augmentation trees (third risk = switching) 

  
144 

     
5.9  The final augmentation tree for discontinue 

due to switching 
  

144 
     

6.1  The true subdistribution function for 1st cause 
(left) and 2nd cause (right), z=0 (dashed) and 
z=1 (solid) 

  
 

159 
     

6.2  The estimated subdistribution curve with 
Exponential kernel for relapse (left) and 
death (right) 

  
 

162 
     

6.3  The estimated subdistribution curve with 
Weibull kernel for relapse (left) and death 
(right) 

  
 

163 
     

6.4  The estimated subdistribution curve with 
Gompertz kernel for relapse (left) and death 
(right) 

  
 

164 
     

6.5  The estimated subdistribution curve with 
Gamma kernel for relapse (left) and death 
(right) 

  
 

165 
     

6.6  The estimated subdistribution curve with 
Generalized Gamma kernel for relapse (left) 
and death (right) 

  
 

166 
     

6.7  Estimated subdistribution functions for 
relapse (left) and death (right) using 
nonparametric (dashed) and parametric with 
Weibull kernel (solid) 

  
 
 

169 
     

6.8  Illustration of proper subdistribution for cause 
of interest (left) and improper subdistribution 
for competing cause (right) 

  
 

170 
     

6.9  Curve fitting of Gompertz-like subdistribution 
with exponential kernel to contraceptive 
discontinuation data. 

 176 

 
 
 
 



 xxv 

6.10  Curve fitting of Gompertz-like subdistribution 
with Weibull kernel to contraceptive 
discontinuation data 

  
 

177 
     

6.11  Curve fitting of Gompertz-like 
subdistribution with Gompertz kernel to 
contraceptive discontinuation data 

  
 

179 
 

 

 

 

 

 

 

 



 xxvi 

LIST OF ABBREVIATIONS 

 

AIC Akaike Information Criteria 

AID Automatic Interaction Detection 

ALL Acute Lymphoblastic Leukemia 

AML-high Acute Myeloctic Leukemia high-risk second 
remission or untreated first relapse 

AML-low Acute Myeloctic Leukemia low-risk first 
remission 

BMT Bone Marrow Transplant 

CART Classification and Regression Trees 

c.d.f Cumulative distribution function 

CGVHD Chronic Graft versus Host Disease 

IDHS Indonesian Demography and Health Survey 

IUD Intra Uterine Device 

LAD Least Absolute Deviation 

LS Least Square 

MLE  Maximum likelihood estimation 

MSPE Mean Squared Prediction Error 

RMSE Root Mean Square Error 

SS Sum of Squared residuals 

 

 

 

 



CHAPTER 1 
 
 

INTRODUCTION 
 

 
 
1.1  Background 

 

Survival analysis is the phrase used to describe the analysis of 

data that correspond to the time from a well-defined time origin 

until the occurrence of some particular events or end-points.  It is 

important to state what the event is and when the period of 

observation starts and finish.  In medical research, the time origin 

will often correspond to the recruitment of an individual into an 

experimental study, and the end-point is the death of the patient 

or the occurrence of some adverse events.  Survival data are rarely 

Normally distributed, but are skewed and comprise typically of 

many early events and relatively few late ones.  It is these features 

of the data that necessitate the special method survival analysis.   

 

The specific difficulties relating to survival analysis arise largely 

from the fact that only some individuals have experienced the event 

and, consequently, survival times will be unknown for a subset of 

the study group.  This phenomenon is called censoring and it may 

arise in the following ways: (a) a patient has not (yet) experienced 

the relevant outcome, such as relapse or death, by the time the 
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study has to end; (b) a patient is lost to follow-up during the study 

period; (c) a patient experiences a different event that makes 

further follow-up impossible.  For example, a typical animal study 

or clinical trial starts with a fixed number of animals or patients to 

which a treatment is applied.  Because of time or cost 

considerations, the investigator may terminate the study or report 

the result before all subjects realize their events.  In this instance, 

if there are no accidental losses or subject withdrawals, all 

censored observations have times equal to the length of the study 

period.  Generally, censoring times may vary from individual to 

individual.  Such censored survival time underestimated the true 

(but unknown) time to event.  Visualising the survival process of an 

individual as a time-line, their event (assuming it were to occur) is 

beyond the end of the follow-up period.  This situation is often 

called right censoring.  Most survival data contain right censored 

observation.   

 

In general, the presence of censoring warrants special methods of 

analysis whereby standard graphical methods of data exploration 

and presentation, notably scatter diagram, cannot be used. 

 

The statistical issues become more complicated in studies that 

have multiple end-points.  Here, a unit is exposed to several risks 

at the same time, but eventual failure of the unit is due to only one 
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of these risks, we call this the competing risks setting.  Consider 

the example of Hoel (1972), based on a laboratory experiment in 

which mice were given a dose of radiation at 6 weeks of age. The 

causes of death were recorded as Thymic Lymphoma, Reticulum 

Cell Sarcoma, or other.  Another example is from a study of breast 

cancer patients (Boag, 1949), where the cause of death was 

recorded as “cancer” or “other”.   

 

More examples can be obtained from various field of research.  In 

contraceptive discontinuation studies, common competing risks 

are failure and abandonment.  With respect to failure, 

contraceptive abandonment is competing risk event.  Similarly, 

with respect to abandonment, failure is competing risk event.  

Each of the two endpoints, failure and abandonment are of 

interest.  In engineering application, competing risks arise in the 

analysis of series systems of components.  Here, failure of any of 

the components causes the system to fail. One observes the 

time at which the system fails and which component caused the 

system to fail. Based on these data, inference regarding the 

lifetime of a particular component is made. 

 

The objective of competing risks data analysis is to isolate the 

effect of a given risk, or a subset of risks, acting on a population. 

According to Seal (1977), the use of competing risks dates back to 
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1760 and evolved out of a controversy over smallpox inoculation.  

Smallpox inoculation in the 1700s was administered by applying 

leeches to the body, a practice that could lead to acute illness and 

death. Physicians argued whether the benefits of inoculation 

outweighed the initial risk of death.  Daniel Bernoulli, in a 1760 

memoir entitled “Essai d’une nouvelle analyse de la mortalité 

causée par le petite vérole; et des advantages de l’inoculation pour 

le prévenir”, tried to estimate the expected increase in lifespan, if 

smallpox were eliminated. This calculation could then be used to 

weigh the pros and cons of smallpox inoculation. 

 

Similarly, in the modern treatment of competing risks we are 

interested in isolating the effect of individual risks, for example, 

when we wish to assess a new treatment for one kind of disease.  

In a long-term study of this treatment on a sample of individuals, 

some will die of causes other than this disease. The appropriate 

analysis of this problem must account for the competing effects of 

death from other causes. 

 

1.2 Mathematical Formulation of Competing Risks 

 

Let Ti, i = 1,…,n be n independent positive random variables with 

common continuous distribution F.  Independent of Ti’s, let Ui, i = 

1,…,n be also independent positive random variable with possibly 
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non-continuous common distribution G, and δi, i = 1,…,n be the 

failure type associated with Ti, where δi = 1,…,J.  A typical 

competing risks problem is to make statistical inference on F based 

on censored observation (Yi,∆ i), defined by 

                    ( ) ( )iiiiii UTIUTY ≤== ∆   ,,min  

where I(•) is an indicator random variable of the specified event.  

The following points should be emphasized: 

-  The pair (Ti,δi) from different subjects in the sample are assumed 

to be iid. 

- The different failure types within each subject are not assumed 

to be independent. 

- Each subject can experience at most one failure type. 

 

The overall hazard function is defined by 
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This quantity indicates the rate at which subjects who have yet to 

experience any of the competing risks are experiencing the jth 

competing cause of failure.   

 

The failure time density function for failure type j is defined by 

 ( ) ( ) ( )tSttf jj λ=  (1.4) 

The subdistribution (cumulative incidence) for failure type j is 

defined by 
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This is the probability of experiencing the jth event in the setting 

where competing risks are acknowledged to exist.  Note that the 

value of Fj( t )depends not only on the rate at which the specific 

cause of interest is occurring, but also on the rates at which all 

the competing risks occur. Fj( t )  is not a true distribution 

function due to its properties: it is non-decreasing with Fj(0) = 0 

and Fj(∞) = P(δ = j) < 1 .  These curves have a straightforward 

interpretation and observe that  
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Sometimes investigators may be interested in identifying risk factor 

for a particular outcome or in comparing groups of patients after 

adjusting for important prognostic factors.  Such kind of statistical 

procedure is called regression. The most commonly used regression 

model for analyzing survival data is the Cox proportional hazards 

model (Cox, 1972).  The Cox model is a regression model for the 

hazard rate, or instantaneous risk, of a given outcome.  It is often 

used in the presence of competing risks to model the cause-specific 

hazard rate (1.3).  When the outcome is single endpoint, there is 1 

to 1 correspondence between the hazard rate and the survival 

probability as estimated by the Kaplan Meier estimator.  For 

competing risks data, this relationship does not hold, and 

estimates the probability that a patient has experienced the event 

of interest, the subdistribution function (1.5), depend on the 

hazard rates for all the competing risks.  That is why, it is worth to 

model the subdistribution function directly.  Hence, we model the 

subdistribution for failure from cause j conditional on the covariate 

vector Z, Fj(t;Z) = P(T ≤ ti, δi = j|Z).    

 

1.3  Scope 

 

The thesis focus is on the problem of regression methods for 

subdistribution of competing risks.  The regression methods which 

model the relationship between predictor variable(s) and competing 
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risks survival time outcome include nonparametric exploratory 

regression, hybrid regression and parametric regression.  In this 

thesis, we used tree-structured regression as a nonparametric 

exploratory statistical method.  Tree-structured regression is 

combined with semiparametric regression for subdistribution of 

competing risks proposed by Fine and Gray (1999) to form the 

hybrid regression.  The parametric version of regression for 

subdistribution of competing risks is developed based on non-

mixture cure model which regards individuals who are not yet 

experiencing the event of interest as a cure fraction. 

 

1.4  Problem Statements 

 

The common approach to summarize the various endpoints in a 

competing risks study is to generate a series of Kaplan-Meier 

curve, one for each endpoint. Kaplan-Meier estimator is not an 

appropriate statistics when there are competing risks because it 

estimates the probability of the event occurring in imaginary 

patient who cannot experience other events.  For example, a 

Kaplan-Meier estimator of relapse is an estimate of the probability 

of relapsing in a patient who can never die. 

 

Kaplan-Meier estimator of survival function which treats competing 

risk events as censoring events implied that one assumes a 
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hypothetical latent event time for the endpoint of interest.  The use 

of Kaplan-Meier curve in competing risks analysis relies on the 

strong assumption of independence between different competing 

risks events.  This assumption is clearly violated when one uses 

censoring to account for nonindependent competing event, where 

various competing risks are often dependent.  For example, those 

at high risk of death with chronic graft versus host disease 

(CGVHD) are thought to be at lowest risk of relapse (Weiden et al., 

1981).  

 

Fine and Gray (1999) and Klein and Moeschberger (2003) have 

advocated the use of subdistribution function which takes 

consideration the presence of other events, regardless of 

independence, within a competing risks framework. Unlike the 

Kaplan-Meier method, the subdistribution method provides a 

breakdown of the expected distribution of patients into the possible 

endpoints, or states, at each point in time, such that the sum of 

individual event rates (including the “no event rate”) will always be 

100%.  This contrast with Kaplan-Meier method, where the sum 

will exceed 100% (Southern et al., 2006). 

 

In most applications the effects of covariates on the competing 

risks probabilities are modeled through the cause-specific hazard 

rates (1.3), the most typical being Cox (1972) regression models 
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(Prentice et al. 1978).  This model can be fitted by treating 

occurrences of the competing risks as censored observation.  

Cause-specific hazard functions are invaluable in quantifying the 

instantaneous risk for alive individuals.  However, they may not be 

appropriate if one desires summary probabilities for the different 

causes.  It is important to note that modelling the hazard rate may 

or may not match the objective of investigator.  It is often more 

desirable to investigate the subdistribution function (1.5) directly, 

because cause-specific hazard doesn’t obviously give the 

information about proportion of patient experiencing a cause of 

interest.  Information on that proportion may be more relevant to 

the clinical management of disease. 

  

In light of the fact that the subdistribution function (1.5) and 

cause-specific hazard rate (1.3) for a given risk are not 

interchangeable, it is of interest to investigate the effect of 

covariates on the subdistribution function directly.  This no 

interchangeability means that the properties of cause-specific 

hazard do not translate directly into properties of subdistribution 

since these curves are functions of all the competing risks' cause-

specific hazard rates.  Besides that, the estimates of cause-specific 

hazard regression often do not agree with impression drawn from 

plots of subdistribution for each level of covariates (Klein and 

Andersen, 2005). 
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Allison (1995) and Lunn and McNeil (1995) had employed 

previous work on analyzing the effect of certain factors on 

competing risks which concentrated on examining their effect 

on the corresponding cause-specific hazards. As noted 

previously, the effect of a factor on the cause-specific hazard for 

a particular type of failure can be quite different than its effect 

on the subdistribution of that type of failure.   

 

To our knowledge, only a few works has been done on direct 

modelling for the subdistribution function.  Fine and Gray 

(1999) proposed a model for the subdistribution hazard of the 

subdistribution function, building on earlier work by Gray 

(1988) and Pepe (1991).  This approach will directly assess the 

importance of covariates on the subdistribution curve.  The 

modelling assumes directly that the complementary log-log of 

the subdistribution function is on the proportional hazard form.  

Fine (2001) proposed a semi-parametric transformation model 

for the subdistribution of a competing risk.  Andersen et al. 

(2003), Klein and Andersen (2005) and Klein (2006) proposed 

pseudo observation approach based on multistate model 

representation for the competing risks.  This approach is 

computationally extensive. Another recent approach is direct 

parametric regression analysis (Jeong and Fine, 2006).  They 
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utilized a simple form of Gompertz distribution for the improper 

baseline subdistribution of the event of interest.      

 

Many medical studies focus on the relationship between the time 

to some event, such as death or relapse, and covariates measured 

at the time at which therapy is initiated.  When these covariates 

are discrete or categorical an interpretation of the effects of the 

covariates on outcome is relatively simple. Using a proportional 

hazard model the effect of a binary covariate on outcome is 

interpreted in terms of the relative risk of a patient with the 

characteristic as compared to a patient without the characteristic.  

When the covariate is continuous the interpretation of the effect of 

the covariate on outcome is more difficult. Here one typically 

reports the relative risk of a patient with a one-unit increase in the 

covariate. Most clinical investigators would rather have the 

continuous covariate converted into a binary covariate reflecting 

high and low risk values of the covariates.  While this model may 

not be optimal for a continuous covariate, it is the model that is 

most often reported in the medical literature.  There are a number 

of graphical techniques (see Klein and Moeschberger, 2003), such 

as martingale residual plots, which can be used to check if a 

threshold model is correct, but quite often the decision to use such 

a model is made by the clinical investigator on the grounds that it 

is more understandable than a model which treats the covariate as 
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continuous.  Once a decision is made to use a threshold model, the 

problem is to determine the cutpoint between high risk and low 

risk patients.  In some cases, the cutpoint can be determined from 

the literature. Often cutpoints need to be determined from the 

data. Selection of the cutpoint can be made either by a data-

oriented or outcome-oriented approach (Schulgen et al., 1994). In 

the data-oriented approach, cutpoints are based on the 

distribution of the covariate in the study population.  For example, 

the median could be used.  The outcome-oriented approach picks a 

cutpoint for which the discretized covariate has the largest effect 

on outcome.   

 

Some authors have proposed the method to determine cutpoints 

for survival data outcome (Jespersen 1986, Contal and O’Quigley 

1999, Lausen and Schumacher 1992, 1996, Mandrekar et al. 

2003, Tableman and Kim 2004) and for continuous longitudinal 

data (Abdolell et al., 2002).  By considering multiple causes of 

failure in competing risks data, it is naïve to use all the above 

methods for addressing competing risks data.  The direct use of 

those methods may mislead the result.  Hence, it is important to 

develop method for dealing with competing risks data.  In this 

thesis, we propose cutpoint determination method for competing 

risks data by using direct modelling of subdistribution function. 
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Often in practice, one primary goal of competing risks survival 

analysis is to extract meaningful sub-groups of patients 

determined by the prognostic factor such as patient characteristics 

that are related to the cause of disease.  Although, the existing 

competing risks regression model is powerful in studying the 

association between covariates and competing risks survival times, 

usually they are problematic in prognostic classification.   

 

Recently a large amount of tree-structured methods have been 

developed for the analysis of univariate and multivariate survival 

data (Gordon and Olshen 1985, Segal 1988, Davis and Andersen 

1989, LeBlanc and Crowley 1992 and 1993, Huang et al. 1998, 

Segal 1992, Zhang 1998, Su and Fan 2004, Gao et al. 2004), but 

there are no prognostic classification methods for competing risks 

survival data.  Analysis of competing risks survival data is complex 

due to the presence of more than one cause of failure.   

 

The following is the study that motivates our research for 

prognostic classification in competing risks survival data. 

 

Example: Contraceptive discontinuation study 

Contraceptive method is one kind of mode in family planning 

program.  This program aims to decrease the rate of reproduction 

by means of controlled birth scheduling.  While using the 
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contraceptive method, women are expected not to be pregnant.   

Thus it is important to identify characteristics that may relate to 

the discontinuation of contraceptive method, which may cause the 

pregnancy.  Some statistical modelling of the contraceptive 

discontinuation data are proposed by Islam (1994), Karia et al. 

(1998), Ali and Cleland (1999), Steele (2003), and Steele et al. 

(2004).   

 

As proposed by Steele (2004), the interest of this kind of research 

is to focus on the last episode of the time of contraceptive use until 

it discontinues.  The outcome variables are measured in time scale 

from the use to the discontinuation.  We focus on three types of 

discontinuation in a competing risks framework.  The outcomes we 

consider are failure, contraceptive abandonment while in need of 

family planning, and switching to another contraceptive method.  A 

discontinuation is defined as a contraceptive failure if the woman 

reported that she became pregnant while using the method.  Thus, 

this definition includes both failures of the method itself and 

failure owing to incorrect or inconsistent use of the method.  

Adoption of different method within one month of discontinuation 

is classified as a method switch, whereas continuation of nonuse 

for one month or more is classified as contraceptive abandonment.  
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Clearly, contraceptive failure is of interest because it leads directly 

to an unintended pregnancy.  Contraceptive abandonment is also 

an important outcome to study because it leads to immediate risk 

of unintended pregnancy.  Method switching also may lead to an 

increased risk of unintended pregnancy if use of a modern method 

is discontinued in favor of a less effective, traditional method.  

Contraceptive failure is somewhat different from the other two 

outcomes in that it presumably is an unintentional event, whereas 

contraceptive abandonment and switching suggest some decision-

making and choice on the part of the woman.   

 

We consider some covariates which are supposed to be able to 

explain the rate of discontinuation. The important one is the 

contraceptive method. For this analysis, contraceptive methods 

were grouped into three categories: pills and injectables, IUDs and 

implants, and other modern methods (mainly condoms).  

Traditional methods and sterilization were excluded from this 

study. Pills and injectables were grouped together because they are 

both short-term hormonal methods. IUDs and implants are longer-

term reversible methods that require a health worker to remove 

them. As such, they are fundamentally different from other 

reversible methods in that they require the user to be proactive to 

discontinue use and to have contact with the health system at the 

time of discontinuation.  The other covariates are woman’s 
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education (primary or lower, secondary, university), household 

economic status (1 – 7 scores), area of residence (urban, rural), age 

of the women at the start of the episode of use (years), and religion 

(Moslem, non-Moslem).   

 

Unlike the ordinary competing risks models which only concern 

the estimation of covariate effects on the time to discontinue, the 

question to this study is “Which stratification group is more likely 

to experience each type of discontinuation?”, and the interest is in 

identifying small groups of woman that have similar characteristics 

of contraceptive discontinuation.  For this purpose, we will develop 

tree-structured regression for competing risks outcome. 

 

Direct modelling of subdistribution function utilized some link 

functions to model the linear relationship between the 

subdistribution function with the covariates.  This link function is 

capable of modelling their linear effects, when it is well-known that 

tree-based methods are not efficient to represent linearity.  The tree 

method is excellent at handling categorical predictors while linear 

regression defines dummy variables and may result in messy 

model form, especially when the number of categories is large.  

Linear regression may fail to model nonlinearity while tree 

methods, via step functions, often provide satisfactory 

approximations.  Detecting interaction among covariates could be a 
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daunting task in linear regression while a tree model does 

automatic interaction detection.  Perhaps, if such kind of linear 

regression and tree models are well combined, the resulting model 

is able to improve model fit without a loss of interpretability which 

is often a challenging work in modelling.  It is of interest to obtain 

a hybrid model for competing risk developed from these two 

models. 

 

The most widely used analyses of competing risks data in practical 

applications are nonparametric and semiparametric.  A major 

advantage of this approach is that there is no need to assume an 

underlying distribution form for subdistribution function, which is 

difficult in the competing risks setting, owing to the impropriety of 

this function.  Of course, such flexibility arises at the cost of 

efficiency loss relative to parametric models, especially with small 

sample size.  On the other hand, the parametric models permit 

extrapolation of long-term event probabilities, which are of 

inherent interest and which cannot generally be identified from 

nonparametric and semiparametric models.  Moreover, parametric 

regression models are amenable to formal maximum likelihood 

inferences.  Jeong and Fine (2006) proposed a direct parametric 

subdistribution regression by using Gompertz distribution for 

baseline distribution.  Gompertz distribution is used because it can 

exhibit an improper subdistribution which is needed for modelling 
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subdistribution.  In this thesis we propose parametric cure model 

for baseline subdistribution function.  Various well known kernel 

distribution functions can be used in cure model.  Therefore, we 

can develop parametric subdistribution function systematically. 

 

1.5 Research Objectives 

  

The special feature of competing risks data which extend the single 

type of failure time data analysis to multiple types of failure time 

and the importance of relaxing the assumption of independency 

among types of failures made subdistribution function approach 

for addressing competing risks data analysis important.  In 

addition, the development of regression model based on 

subdistribution function is important for accounting for predictor 

variable(s) in the analysis.  To do so, we focus on the development 

regression model for the subdistribution of competing risks 

through four subtopics, namely (1) cutpoint determination method, 

(2) regression tree method, (3) hybrid method and (4) parametric 

model.  These regression methods are alternative modelling of 

competing risks, beside regression for cause-specific hazards.  

Details on competing risks regression model are presented in 

Chapter 2. 
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In view of the problems and the importance of the studies stated in 

the previous section, there are five primary objectives that address 

the research problem. 

i) To develop cutpoint determination method for competing risks 

data by using modelling of subdistribution function.  Several 

methods are proposed and their performances are evaluated 

through simulation to select one of them as the best method 

for being used in the development of tree-structured method. 

ii) To develop tree-structured regression for competing risks 

outcome based on subdistribution function.  The simulation is 

conducted to asses its performance in identifying the subgroup 

of subjects contained in data.    

iii) To develop a hybrid model for competing risk which is 

constructed by semiparametric competing risks regression 

based on subdistribution and its tree-structured regression 

counterpart.   

iv) To develop a parametric direct model of subdistribution 

function based on parametric non-mixture cure model with 

plateau. 

v) To develop a parametric direct model of subdistribution 

function based on Gompertz-like distribution.  
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1.6  Outline of the Thesis 

 

Chapter 2 gives the literature review of this research work.  To 

facilitate readers, a review of competing risks data analysis along 

with its subdistribution modelling which comprises test for making 

comparison between subdistribution function and subdistribution 

regression model are presented in section 2.1 and 2.2.  The 

discussion continues with the presentation of outcome-oriented 

cutpoint determination method in section 2.3.  We considered two 

methods, the cutpoint determination based on two-sample statistic 

and based on subdistribution regression.  The key idea of the 

landmark is the Classification and Regression Trees (CART) 

(Breiman et al. 1984) described in 2.4.  A review of the tree-

structured method for survival data is presented in 2.5.  The 

hybrid model that combined linear regression with tree-structured 

modelling is discussed in 2.6.  Finally, the review of the parametric 

regression for competing risks data analysis is in 2.7. 

 

In Chapter 3, several different ways to determine outcome oriented 

optimal cutpoints for competing risks are compared and discussed.  

The methods can be classified into two-sample statistic and 

subdistribution regression method.  We carried out some 

simulation works to select the optimal method.  The optimal 

method is then applied to contraceptive discontinuation data. 
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Bootstrap validation and permutation test are also performed to 

evaluate the resulted cutpoint.    

 

In Chapter 4, a computationally convenient method is proposed to 

extend CART algorithm to competing risks survival data.  Trees are 

developed in a conventional way.  At each split only the subset of 

data contained in a given node is considered and a local best split 

is searched by evaluating all allowable candidates in the current 

node.  We assume a conditional proportional hazard for 

subdistribution of competing risk structure between the two 

derived daughter nodes, with the best split to be chosen such that 

the separation between the two daughter nodes are maximized.  

We assume a conditional proportional subdistribution hazard 

structure between the two daughter nodes derived from the same 

parent node but the subdistribution hazard structures between 

nodes from different parent may not be proportional.  Therefore, we 

call these survival trees as node specific baseline subdistribution 

hazard tree because the terminal nodes do not share the common 

baseline subdistribution hazard.  The proposed method is 

exemplified by contraceptive discontinuation data and its 

performance is also evaluated by data generated from proportional 

hazard for subdistribution of competing risks models. 
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In Chapter 5, we extend the hybrid model to accommodate 

competing risks regression.  Firstly, the best semiparametric 

subdistribution regression model is selected by means of AIC 

statistic. Then, we augment it with tree-structured regression 

model.  We illustrate the proposed procedure with application to 

contraceptive discontinuation data. 

 

In Chapter 6, two new parametric subdistribution regression 

models are proposed.  First, we consider subdistribution of 

competing risks modelling using parametric cure model.  

Parametric cure model is adopted for subdistribution function 

because it has cure fraction parameter which is similar with the 

proportion of individuals who do not experience the event of 

interest in the competing risks framework.  Moreover, cure model 

can be developed based on well known distribution function.  So, 

its associated improper subdistribution function can be 

constructed systematically.  Second, a Gompertz-like 

subdistribution is developed to relax the presence of cure fraction 

parameter.  Sometimes the events occur at fairly steady rate over 

the entire time period of observation. One would expect that this 

subdistribution curve would plateau at later times.  

Subdistribution of such event is better described by a proper 

distribution.  Here, we propose a reparameterization procedure for 

parametric cure model to take the advantage of Gompertz 



 24 

distribution which can exhibit proper and improper distribution.  

Parametric inference is conducted by means of maximum 

likelihood function.  A simulation study is used to evaluate the 

efficiency of the parameter estimates.  We illustrate the first model 

using Bone Marrow Transplant Data, and contraceptive 

discontinuation data for the second model.   

 

Finally, in chapter 7 a summary of the research work is given and 

several considerations for further researches are also listed. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

In the previous chapter, the competing risks problem has been 

defined and a brief introduction has been given.  In this chapter, 

the literature related to regression for subdistribution of 

competing risks will be reviewed.  The discussion will begin with 

the introduction of some basic statistical quantities in competing 

risks setting and their estimations based on a censored sample 

in Section 2.1 and followed by competing risks modeling based 

on subdistribution function in Section 2.2.  Then, in Sections 2.3 

and 2.4, the outcome-oriented cutpoint determination method 

and Classification and Regression Tree (CART) will be 

respectively discussed. The CART extension to survival time 

data, known as survival tree, will be presented in Section 2.5 

followed by its extension for handling multivariate survival time 

data in Section 2.6.  The combination of Cox proportional hazard 

model and regression tree, called tree-augmented regression tree, 

will be discussed in Section 2.7 and finally, parametric modeling 

of regression for competing risks will be presented in Section 2.8. 
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2.1 Competing Risks 

 

Often in life-testing situation, failure of an individual can be 

identified as one or more of J (J ≥ 2) mutually exclusive, but 

possibly dependent cause of failure.  In other words, each 

individual is subject to J distinct risks referred to as competing 

risks threatening its life.  Occurrence of one event precludes 

observation of the other events on the same individual (it is 

assumed that patient can fail only from one cause).  Associated 

with cause j, there is nonnegative absolutely continuous random 

variable Xj representing the lifetime of individual when no other 

potential risks are present.  Suppose the termination time of an 

individual is defined as the time to the first failure.  Thus, 

lifetime of an individual is given by { }JXXT ,...,min 1= .  The 

available information is usually given by the pair ( )δ,T , where δ 

indicates the cause(s) of failure, i.e. δ = j if T = Xj.  The competing 

risks concept can appropriately be applied to many areas of 

study, such as industrial reliability analysis, market transaction 

analysis, and clinical trial on paired organs.   

A fundamental parameter in competing risks data analysis is 

the cause-specific hazard rate, defined by (1.3).  The jth cause-

specific hazard is the rate of failure at time t from cause j 
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among individuals who are still alive at time t.  This quantity is 

often called the crude hazard rate. 

 

A related quantity is the cumulative cause-specific hazard for 

cause j, defined as follows: 

 ( ) ( )∫ ==
t

jj Jjduut
0

,...,1   ,λΛ   (2.1) 

Λj(t) is also known as the crude cumulative hazard rate. It 

should be emphasized that the exponential of the negative 

cumulative crude hazard rate does not have a clear probabilistic 

interpretation and is not related to any proper survival 

function. Cause-specific hazard rates affect the overall hazard 

rate of the time to failure, λ, the latter being the sum of all J 

cause-specific hazard rates: 

 ( ) ( )∑
=

=
J

j
j tt

1

λλ   (2.2) 

The cause-specific hazard can be derived from the joint survival 

function of the J competing risks, S(tl,...,tJ) = P(X1>t1,...,XJ >tJ): 

 ( ) ( ){ }
tttJ

j
j

J
ttS

t
t

===∂
∂

−=
...1

1
,...,logλ   (2.3) 

This relationship was derived by Gail (1975) and Tsiatis (1975).  

Note that the survival function of the time to failure, T = min(X1, 

…, XJ), is ST(t) = S ( t , . . . , t ) .  
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Marginal hazard rate for the jth cause of failure can be found by 

differentiating –log Sj(t), where Sj(t) = S(0,…,0, tj,0, …,0) is the 

marginal survival function of the random variable Xj.  When the 

potential failure times are independent then the marginal and 

crude hazard rates are identical. This need not be the case when 

the risks are dependent. It is also not possible to identify from 

competing risks data whether the failure times are independent 

or not because for every dependent system of X1, …, XJ there is a 

set of independent random variables that will have the same 

cause-specific hazard rates. However, the independent system 

of risks will have different marginal distributions from the 

original dependent set of variables (see, for example, Klein and 

Moeschberger, 1987, Basu and Klein, 1982). 

 

In competing risks problems, one is often interested in a 

probability which summarizes the likelihood of the occurrence 

of a particular competing risk. An excellent overview of the 

methods for summarizing competing risks failure time data is 

provided by Pepe and Mori (1993), Gooley et al. (1999), and 

Klein and Moeschberger (2003). Usually, three probabilities may 

be computed, each of them having its own interpretation. These 

are the crude, net, and conditional probabilities. 
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The probability which best describes survival experience in the 

presence of competing risks is the crude probability. The crude 

probability is the probability of failure from a particular cause 

when there are other risks acting in the population.  Crude 

probabilities are typically expressed by the subdistribution 

function, defined by (1.5).  It is a way of describing the 

probability distribution for a specific cause of failure in the 

presence of all causes.  Crude probability refers to quantities 

derived from the probability distribution of the observable 

random variable, T and δ, where T is time to failure, and δ = 1, 

…, J is cause of failure.  The subdistribution function denotes 

the proportion of all individuals who are observed to fail from 

cause j at or before time t in the presence of all cause of failure.  

For example, if δ = 1 represent death from breast cancer, then 

the chance that a woman dies from breast cancer between ages 

40 and 60 would be equal to [F1(60) – F1(40)].  Note that F1(∞) is 

the proportion of individuals who will be observed to die from 

breast cancer, and ( ) ( )tFtFJ

j j =∑ =1
 defines the distribution 

function for death from any cause, F(t) = P(T ≤ t).  We denote the 

overall survival distribution as S(t) = 1 – F(t) as defined by (1.6).   

 

Another probability which is being often reported is the net 

probability.  It is the probability of failing from a particular 
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cause in a hypothetical world where all other causes of failure 

were removed. An example of a net probability is the chance 

that an individual will die from heart disease in the 

counterfactual world where one can only die from heart disease. 

In the latent failure time model, this is a quantity 1 - Sj(t )  

which is interpreted as the probability of failure from cause j  by 

time t  if it is impossible to experience another failure. However, 

these are rarely the probabilities of clinical interest and 

generally should not be considered in the competing risks 

problems. 

 

The third probability used to summarize competing risks data is 

the conditional probability function for the competing risks. For a 

particular risk, j ,  let Fj and F–j be the subdistribution functions 

for risk j and for all other risks lumped together, respectively. 

Then the conditional probability function is defined by 

 ( ) ( )
( )tF

tF
tCP

j

j
j

−−
=

1
  (2.4) 

This quantity represents conditional probability of failure from 

the jth cause occurring by time t given the patient does not fail 

from other causes prior to t. 

 

An alternative formulation of the competing risks problem is in 

terms of a multistate model. It was originally proposed by 
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Prentice et al. (1978) and recently discussed by Andersen et al. 

(2002). This approach does not require the construction of 

potential failure times for each cause of failure and removes 

some of the confusion between the crude and net probabilities 

of occurrence of a competing risk. In the multistate model 

which is illustrated in Figure 2.1, there are J + 1 states a 

subject may be in at any given point in time. The initial state 0 

is transient and is the state that the subject is alive. The other 

J states are absorbing states corresponding to failure from 

cause j, j = 1, . . . , J. 

 

Figure 2.1. The competing risks model 

 

Here, the transition intensities λj, j = 1,…, J, are the cause-

specific hazard rates defined by (1.3) and conditional 

probabilities defined by 

             P0j(s,t) = P(state j at time t|state 0 at time s), s < t, 
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are transition probabilities. Probability P00(0,t) is the probability 

of a subject being alive at time t and P0j(0,t) represents the 

probability of failure of cause j before time t. Note that P0j(0,t) is 

the subdistribution probability of failure of type j by time t and 

is quantified by the subdistribution function for the cause j 

evaluated at time t. 

 

The latent failure time approach and multistate model 

formulation form the basis for the analysis of competing risks 

data and enables us to look at the problem from different 

perspectives.  

 

In the following passage we will consider estimation of the basic 

competing risks quantities based on a censored sample of 

competing risks data where each subject may fail due to one of 

J (J ≥ 2) causes. For each of n subjects, we observe a pair of 

random variables (Ti, δi), where Ti is an on-study time, and δi is 

an indicator of the cause of removal from the study defined as 

follows: 

 




=
=

Jjjiji 1,...,   where , caused from failed  individual if,
censored was nobservatio if,0

δ   (2.5) 

For further developments, it is convenient to introduce the 

counting process notation. A formal and rigorous survey of 

counting processes and their applications can be found in books 



 33 

by Andersen et al. (1993) and Fleming and Harrington (1991). 

Here, we will introduce the notation and approaches to be used 

in the sequel. 

 

The counting process notation replaces the time and censoring 

indicator (Ti,δi) with two functions of time: Ni(t), which counts the 

number of times the unit has been observed to “fail” by time t, and 

Yi(t), which is 1 when the unit is under observation and 0 

otherwise. 

  

For ordinary survival data this means Ni(t) = 0 and Yi(t) = 1 for t < 

Ti, Ni(t) = ∆i and Yi(t) = 1 for t = Ti, and Ni(t) = ∆i and Yi(t) = 0 for t > 

Ti.  The notation dNi(t) means the jump in Ni at time t . This is zero 

except at the time of a failure, when it is 1.   

 

As a final completion, integral notation is used to indicate sums 

over a time point. For example, the notation  ∫ Zi dNi(t) means the 

sum of Zi×dNi(t) over all time points. dNi(t) is defined as  

( )




=
otherwise,0

  failure of time the at,1 iT
tdN i  

Thus 

( )




=×
censored is unit the if,0

 time at fails unit the if, iii
i

TZ
tdNZ  
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To express it in another way, let the process Y i(t) = I(T i ≥ t) be 

an indicator of unit i being at risk just before time t. Then the 

total number of units at risk at time t is ( ) ( )∑ =
=

n

i
i tYtY

1
. 

 

For competing risk problem, consider a counting process:  

( ) ( )jtTItN ii
i
j =≤= δ, , for i=1,2,…,n 

Note that ( )tN i
j  is a step function, which is zero until unit i  fails 

from cause j and then jumps to one. The process 

( ) ( )∑ =
=

n

i
i
jj tNtN

1
 is also a counting process which simply counts 

the number of failures of type j in the sample at or prior to time 

t.  Throughout, a subscript replaced by "•" will denote 

summation over that index. After adopting this notation, the 

total number of failures by time t is ( ) ( )∑ =• =
J

j j tNtN
1

.  

 

In the counting process notation, the data (T i,  δ i) ,  i  = 1,...,n,  

are represented by ( ) ( ){ }•• i
ji NY , , i  = 1, ... ,  n ,  j = 1,…, J .  

 

The crude cumulative hazard rate can be estimated by the 

Nelson-Aalen estimator (Nelson, 1972, Aalen, 1978) defined as 

follows: 

 ( ) ( )
( )∫=

t
j

j uY
udN

t
0

Λ̂    (2.6) 
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This is the usual Nelson-Aalen estimator one obtains if failures 

from any cause other than the cause of interest are treated as 

censored observations. The estimated variance of this estimator 

(Aalen, 1978) is given by 

 ( )[ ] ( )
( )∫=

∧ t
j

j uY
udN

tVar
0

2Λ̂    (2.7) 

Estimates of the crude hazard rate itself can be found by a 

smoothing technique such as the kernel smoothing proposed by 

Ramlau-Hansen (1983) (see Klein and Moeschberger 2003, for 

details). 

 

While the estimates of the crude hazard rates are helpful in 

understanding the failure mechanism, they do not directly lead 

to estimators of the competing risks probabilities. 

Subdistribution function is the main quantity used to draw 

inference about competing risks data. The estimator of the 

subdistribution function for cause j at time t is defined by 

 ( ) ( ) ( ) JjuduStF
t

jj ,...,1  ,ˆˆˆ
0

== ∫ − Λ    (2.8) 

where Ŝ  is the Kaplan-Meier estimator for the overall survival 

function S obtained by treating any one of the competing risks 

as an event: 

 ( ) ( )
( )∏

≤

•








−=

ts sY
sdNtS 1ˆ    (2.9) 
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and jΛ̂  is the Nelson-Aalen estimator for the cumulative cause-

specific hazard Λj obtained by formula (2.6) where failure from 

the jth cause is considered as an event.   

( )tF j
ˆ  provides an estimate of the probability of the failure of type 

j  prior to time t where a subject is at risk for experiencing any of 

the J competing risks. This estimator was first proposed by 

Kalbfleish and Prentice (1980) and recently discussed in 

Satagopan et al. (2004).  The nonparametric estimation of ( )tF j
ˆ  is 

is carried out in a two-step process as illustrated in Appendix A.   

Andersen et al. (1993) provides an estimator of the variance of 

( )tF j
ˆ : 

 
( )[ ] ( ) ( ) ( )[ ] ( )

( )

( ) ( ) ( ){ }[ ] ( )
( )∫

∫

−−+

−=

−

•−
∧

t
j

jj

t

jjj

uY
udN

uFtFuS

uY
udNuFtFuStFVar

0
2

2

0
2

22

ˆˆ21ˆ

ˆˆˆˆ

  (2.10) 

 

In reporting the results of a study, investigators often try to 

describe all failure types separately. The method most 

frequently employed is the complement of the usual Kaplan-

Meier estimator. Using this approach the estimated probability 

of failure from cause j before time t is ( )tS j
ˆ1 − , obtained by 

treating deaths from the cause j as events, and occurrences of 
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other failures as censored observations. This is an estimate of 

the net probability which has interpretation usually irrelevant in 

dealing with competing risks. Various authors have criticized 

the use of the Kaplan-Meier estimator in the context of 

competing risks (Pepe and Mori, 1993, Gooley et al., 1999). The 

Kaplan-Meier estimator only depends on the rates of the cause 

of interest and does not depend on the rates of the occurrence 

of other competing risks. Under these circumstances, the 

Kaplan-Meier estimator is biased, especially if competing events 

are not independent (see Klein and Moeschberger, 1984). This 

estimator also has no meaning in the multistate model 

formulation for competing risks. Despite all the criticism, 

inappropriate use of the complement of the Kaplan-Meier 

estimator to represent the probability of occurrence of one out 

of several endpoints is quite common. The misuse of these 

methods for estimation purposes stems from a lack of thorough 

understanding among researchers of the assumptions required 

to obtain interpretable Kaplan-Meier estimates. A lack of 

knowledge concerning the mechanics of calculating these 

estimates may likely to contribute to the misuse. This may lead 

to incorrect results while making further conclusions, for 

example, evaluating effect of some factors on survival time, 

comparing time to specific event in several groups of patients, 

etc.  
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2.2 Modelling Based on Subdistribution 

 

The subdistribution function is the primary measure 

summarizing the likelihood of a specific event in the competing 

risks setting. Differences in the subdistribution curves would 

reflect differences in the probabilities of a specific event being 

observed in distinct populations in the presence of other 

competing risks. Standard inference has been based on the 

cause-specific hazards with the main focus being on the cause of 

interest while occurrences of other events are treated as 

censored observations. Statistical methods for comparing cause-

specific hazards are easy to apply and are routinely used in 

practice. However, differences in crude hazard rates for a 

particular risk do not translate directly into differences between 

subdistribution curves since these curves are functions of all the 

competing risks' cause-specific hazard rates. As an example of 

this, suppose there are two types of failure, j=1,2, two groups of 

subject, k=1,2, and suppose all cause-specific hazards are 

constant, with the cause-specific hazard for both types of failure 

being λl l  = λ2 l  = 3 in group 1, while in group 2, λl 2  = 2 for type 1 

failure and λ2 2  = 1 for type 2 failure. Then the subdistribution 

functions for type 1 failure are F11 = (1 - e-6t)/2 in group 1 and 

F1 2  = 2(1 - e-3t)/3 in group 2, so F11(t) < F12(t) for t > (log3)/3 
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even though λl l  >  λl 2  (see Figure 2.2). As a consequence, the 

hypothesis of equality of the subdistribution functions for 

failures of a specific type is not equivalent to the hypothesis of 

equality of the cause-specific hazard functions for failures of that 

particular type. In this section, we will present two techniques 

for comparing subdistribution functions, namely 2-sample 

statistic and regression modeling. 
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Figure 2.2. The unequivalency between cause-specific 
hazard and subdistribution. 

 

2.2.1 Hypothesis Testing for Comparison across 
Populations 
 

In this subsection, we will use the same notation as before. It 

will be assumed that there are only two types of failure (J = 2). 

The failure type of special interest is taken to be type 1. Consider 

a problem of comparing the subdistribution functions for the 
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cause of interest among K (K ≥ 2) populations. Comparison of 

subdistributions across populations could be made either 

directly (Gray 1988, Pepe et al. 1993) or using regression model 

for the subdistribution hazard, usually through a proportional 

hazard model (Fine and Gray, 1999).  Both procedures are 

presented in Appendix B and C, respectively. 

 

In the cmprsk package in R 2.7.1 statistical software, we are 

able to apply the cuminc and crr function to compare the 

subdistribution function (Gray, 1988) and to fit the proportional 

subdistribution regression model described in Fine and Gray 

(1999), respectively. 

 

2.2.2 Hypothesis Testing Based on Regression Models 

 

After fitting proportional subdistribution hazard regression 

models, focus usually shifts on testing a hypothesis about the 

parameter vector β. In this section, we will focus on the 

composite hypothesis where a subset of the β's is an object of 

interest. The hypothesis then is H0: β1 = β10, where ( )2, βββ 1= .  

Here, β1 is a p×1 vector of the coefficients of interest and β2 is 

the vector containing the remaining q components of the 

parameter vector β.  We also partition the Information matrix I into 
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                                          







=

2221

1211

II
II

I ,  

where I11 is of dimension p×p, I22 is of dimension q×q, I21 is p×q, 

/
21I =I21.  Notice that partitioned information matrix has an 

inverse which is also a partitioned matrix with 

                                          







=

2221

1211
1

II
III-   (2.11) 

 

The Wald test of H0: β1 = β10 is based on the estimators of 

parameter vector β, β̂ .  The following quadratic form defines 

the statistic: 

 ( ) ( )[ ] ( )101
111'

101
2 ˆˆˆ ββββ −−=

−
βIWX    (2.12) 

where Ill is p×p principal submatrix of I-1 as defined by formula 

(2. 11). 

 

2.3 Outcome-oriented Cutpoint Determination 

 

The other topic that should be presented in the literature review is 

on the determination of cutpoint in analyzing survival time data.  

The available cutpoint determination methods for various types of 

outcome data are reviewed in this section.  There are two different 

ways to decide optimal cutpoints based on the relationships 

between independent variable and outcome variables. First, some 
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researchers prefer to use two-sample statistic for comparing two 

groups of data.  The other methods are based on statistic from 

regression analysis.   Both methods can be applied in the analysis 

of competing risks survival data. 

 

2.3.1 Cutpoint Determination Based on Two-sample Statistic 

 

Cutpoint is searched along covariate Z which give us the largest 

difference between individuals in the two data-defined groups.  

That is, the outcome of the groups with Z < γ is as different from 

the group with Z ≥ γ  as possible based on some statistics. 

 

Since the cutpoint is unknown, it is of interest to estimate and test 

a hypothesis about the cutpoint. A straightforward approach is to 

use a properly standardized maximum selected rank statistic as 

the test statistic. The null hypothesis H0 for analyzing the 

significance of a cutpoint is that the event Z < γ  has no influence on 

the distribution of T for all γ:  

H0: P(T≤t|Z<γ) = P(T≤t|Z≥γ) for all t , γ ∈ R  

Under this null hypothesis, the standardized form of the log rank 

statistic allows the estimation of γ using a maximization technique. 

To provide a reasonable amount of data in both categories and to 

allow the asymptotic argument cited by Lausen and Schumacher 
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(1992), the hypothetical cutpoint γ will be restricted to an interval 

and the sample quartiles for the bounds of the interval will be used; 

i.e. ( ) ( )[ ]2
1

1
1 , εεγ −−∈ nn FF , where 10 21 <<< εε .  Therefore the 

maximally selected rank statistic is defined as the maximization of 

the log rank statistics in the range between ( )1
1 ε−

nF  and ( )2
1 ε−

nF .  

This estimate may not be unique.  The minimum of this maximally 

selected hypothetical cutpoints can be used for the cutpoint 

estimate as suggested by Lausen and Schumacher (1992). 

 

Mandrekar et al. (2003) proposed outcome-oriented approaches for 

cutpoint determination methods in survival analysis based on log-

rank.  They developed SAS code for the implementation and found 

that both methods gave the same cutpoint.  However, they warned 

that sometimes the estimated cutpoint is close to the boundary 

which may be real or may be due to the presence of outlier.  That 

situation is called end-cut preference which can be avoided by using 

trimming (LeBlanc and Crowley, 1993). 

 

Abdolell et al. (2002) proposed cutpoint determination for 

continuous longitudinal outcome data.  The split corresponding to 

maximum deviance difference is selected as cutpoint.  
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O’Brien (2004) proposed a new approach for choosing the number 

of categories and the location of category cutpoints when a 

continuous exposure variable needs to be categorized to obtain 

tabular summaries of the exposure effect. The optimum 

categorization is defined as the partition that minimizes a measure 

of distance between the true expected value of the outcome for 

each subject and the estimated average outcome among subjects in 

the same exposure category. To estimate the optimum partition, an 

efficient nonparametric estimate of the unknown regression 

function is substituted into a formula for the asymptotically 

optimum categorization.  Although categorization is a generally 

inefficient method of smoothing data, he showed that information 

loss could be substantially reduced by choosing the cutpoints 

adaptively. 

 

2.3.2 Cutpoint Determination Based on Regression Model 
 

Mandrekar (2003) develop cutpoint determination method based on 

log-likelihood of Cox regression.  The result showed that optimal 

cutpoint based on this method was similar with one found by using 

log-rank method.  Tableman and Kim (2004) also developed cutpoint 

determination method for survival time response based on Cox 

regression model.  Profile likelihood proposed by van der Vaart 

(1998)   is    used  for  identifying  cutpoint.  Furthermore, bootstrap  
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procedure is carried out to validate the obtained cutpoint.  They 

found that bootstrap density histogram of cutpoints showed a very 

similar shape to the profile likelihood.   

 

2.4 CART 

 

In this section, some previous works on regression tree is 

discussed.  The review is started by reviewing CART work of 

Breiman et al. (1984) which developed for addressing continuous 

response variable.  Breiman et al. (1984) focus on the least squares 

regression trees.  In addition, the next subsection gives an overview 

of different approaches in an effort to extend tree methods to  

handle independent failure times, namely, univariate survival 

trees, which have been widely discussed in the literature. 

 

The essential idea of CART is growing large tree and then prune it 

to obtain the best-sized tree by evaluating the subtrees of a large 

tree. They used a pruning algorithm to identify a sequence of 

nested subtrees, and then validated the performance of each 

subtree with test sample or resampling depending on the sample 

size available.   
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A large initial tree, Γmax, is grown so that no significant structure 

would be missed. This large tree can also be used to explore the 

data structure. 

 

At this stage, CART claims a node terminal if one of the following 

situations occurs: 

• The node contains less than nmin, say, 10 observations. This 

threshold sample size, nmin, could be made on a case by case 

basis.  However, usually it is set small enough to construct a 

sufficiently large initial tree. 

• The node is pure. A node is pure if all the responses, yi, in 

that node are identical or the node contains only identical 

covariate values. 

 

Once we have a large initial tree, a tree of optimal size needs to be 

chosen from the subtrees of this large.  One possibility is to 

consider all its possible subtrees. But this would be 

computationally overwhelming since the total number of subtrees 

increases much more rapidly as the size of the initial tree grows. 

The idea of CART is to obtain a small sequence of subtrees via a 

computationally efficient pruning method. This method is termed 

the minimal cost-complexity pruning algorithm. 
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From a small sequence of subtrees we need to select one or several 

appropriately sized trees from the nested sequence.  A reasonable 

way is to base the selection on the mean squared prediction error 

(MSPE) for each subtree.  However, since the MSPE depends on the 

scale in which the response was measured, CART uses the relative 

mean squared error to guide the tree selection. 

 

2.5 Survival Trees 

 

CART is not directly applicable to survival data because many 

observations are censored.  Additionally, the major focus in 

survival analysis is on the survival or hazard function rather than 

the mean function.  In extending tree based techniques to cope 

with univariate or independent failure times, some approaches allow 

the direct use of the CART procedure by defining appropriate 

prediction error terms, while the others have made modifications to 

CART in an effort to overcome the difficulties naturally associated 

with censored failure times. 

 

In general, there are two approaches for the development of 

regression tree for survival time response.  The first approach was 

based on minimizing within node error, and the second approach 

was based on maximizing between node differences.  For the first 

approach, the appropriate measures of within-node prediction 
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errors must be defined first. This allows for the direct adoption of 

the CART algorithm. A brief survey of related literature in this 

approach includes Gordon and Olshen (1985), Davis and Anderson 

(1989), Therneau, Grambsch, and Fleming (1988), and LeBlanc 

and Crowley (1992). 

 

The prediction error defined by Gordon and Olshen (1985) is based 

on the distance between the Kaplan-Meier estimate of the survival 

function, Ŝ , and a step function, d̂ , which is chosen such that it 

has mass at most one finite point, and it minimizes the distance 

between any step function restricted to at most one single jump 

and Ŝ .   

 

The "distance" can be measured by a class of pL  Wasserstein 

metrics or ordinary pL  metrics between two distribution functions, 

F1 and F2.  However, LeBlanc (1989) showed the pL  or pL  

Wasserstein distances are quite sensitive to censoring from the 

simulation study. 

 

Davis and Anderson (1989) proposed exponential survival trees 

by modelling the survival distribution with its simplest form, the 

exponential distribution, which assumes a constant hazard 

function λi(t) = λ. 



 49 

 

The proposed algorithm partitions each non-terminal node on the 

basis of an exponential log-likelihood loss.  The split selected is 

the partition that minimizes the loss among all possible binary 

splits defined by the covariates. 

 

In a paper on exploring the properties of martingale-based 

residuals, Therneau et al. (1990) suggested the martingale 

residuals could be used as the response input for the standard 

CART as the martingale residuals themselves are rather 

informative.  They also comment that this allows direct use of the 

commercially available CART program as the software for 

univariate survival trees is not yet widely available. 

 

LeBlanc and Crowley (1992) developed a procedure called relative 

risk trees for obtaining tree-structured relative risk estimates for 

censored survival data. 

 

Rather than minimizing within-node variability, Ciampi (1986), 

Segal (1988), and LeBlanc and Crowley (1993) proposed the second 

approach that are based on maximizing between-node difference 

since defining error terms is relatively difficult for survival data and 

usually requires considerable computation. To measure the 

between node difference, familiar two-sample rank statistics 
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designed for censored data, such as the logrank statistic, is 

commonly suggested. Such tree procedure is termed as trees by 

goodness of  split.  

 

Ciampi et al. (1986) proposed using the logrank statistic to split 

data. For every permissible split, they compute the log-rank 

statistic, which tests the difference in survival between two groups 

induced by the split. The split with the largest logrank statistic is 

selected and the data are partitioned accordingly. The procedure is 

repeated and the data continue to branch off until no further split 

produces a significant 2χ  statistic. Recall that under the null 

hypothesis of no difference the logrank statistic follows a 2χ  

distribution. However, this might lead to poor results according to 

Breiman et al. (1984). 

 

Segal (1988) first formalized the idea of growing trees via 

maximizing between-node difference.  He proposed the Tarone-

Ware (1977) or Harrington-Fleming (1982) classes of two-sample 

tests as splitting statistics. However, since only internal nodes 

have an associated splitting statistic for any tree grown by 

goodness of split, the cost-complexity pruning algorithm of CART 

cannot be directly adapted.  Alternatively, Segal proposed a 

bottom-up pruning algorithm. 
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LeBlanc and Crowley (1993) also suggested splitting by the 

logrank statistic and they proposed a pruning algorithm 

analogous to CART. 

 

2.6 Multivariate Survival Tree 

 

Multivariate survival data arises when each subject may experience 

multiple failures or individuals under study are naturally 

clustered.  The former case is termed as multiple event times and 

the latter is called clustered failure times.  There are very few 

published tree methods regarding multivariate survival data.  Su 

and Fan (2001, 2004) proposed two approaches to handle 

correlated failure time by using tree based methods.  In the first 

approach, the splitting criterion is based on maximizing between-

node difference in survival, where the difference is measured by a 

robust log rank statistic derived from the marginal approach to 

multivariate survival data by Wei, Lin and Weissfeld (1989).  In the 

second approach, the data is split based on a likelihood ratio test. 

They introduced a gamma distributed frailty to account for the 

dependence among survival times.  

 

Gao et al. (2004) extended CART algorithm to multivariate survival 

data in a similar manner as Su and Fan (2004).  They proposed 

method intended to provide an exploratory data analysis for 
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multivariate survival data, and it was complimentary rather than 

competitive to those parametric or semi-parametric methods.  The 

splitting rule is defined as Wald statistic evaluating covariate effect.  

The current node h is separated into two daughter nodes such that 

the ratio of the hazard between the two daughter nodes is 

maximized.  Thus, they created trees by maximizing between-node 

separation.  Segal’s pruning method is utilized to avoid 

computational burden (Segal, 1988).  This method also has the 

advantage to provide a sequence of candidate trees facilitating the 

investigators to select a proper tree with additional knowledge 

relevant to the scientific question.  

  

Gao et al. (2006) mentioned the drawback of the previous methods.  

Though survival trees developed above were computationally 

convenient, they suffered a drawback that the overall model 

structure was unclear.  In trees constructed by this method, all the 

resultant groups are completely unrelated.  Instead of using the 

available method, they assumed a proportional hazards structure 

within the whole tree and thus present a clear model structure.  As 

a consequence, a global optimal split is obtained at each 

partitioned because the best split is searched over the whole tree.   
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2.7 Tree-augmented Regression Trees 

 

Su and Tsai (2005) proposed a hybrid model that combined the 

Cox proportional hazards regression with tree modelling.  The 

proposed model is called tree-augmented Cox proportional hazards 

models.  The motivation is the Cox proportional hazards regression 

and tree-structured modellings complement each other.  Therefore, 

combining them can yield a hybrid model that provides a more 

efficient way to model survival data and improves fit without loss of 

interpretability.  The resulting model provides a natural adequacy 

checking for the functional form specification in the best Cox 

proportional model. 

 

2.8 Parametric regression for Competing Risks 

 

Larson and Dinse (1985) postulates a mixture model that express 

the distribution of survival time and its corresponding cause of 

failure.   The mixture model was composed of marginal distribution 

of failure type and the conditional distribution of time to failure, 

given type of failure.  Failure type is modeled with a multinomial 

distribution and failure times conditioned on failure type with 

piece-wise exponential distribution.   

 



 54 

Maller and Zhou (2002) proposed a similar modelling based on 

parametric mixture model of the joint distribution of (T,δ). The 

subdistribution function of cause j is represented by product of 

conditional c.d.f of cause j and probability of failure type j.   

 

( ) ( ) ( )jPjtTPtF j =×=≤= δδ|  

 

Conditional c.d.f ( )jtTP =≤ δ|  is modelled by using a well-known 

parametric distribution and ( )jP =δ  with a multinomial 

distribution. 

 

Jeong and Fine (2006) proposed two ways of full parameterization 

of the subdistribution without covariate, i.e. by parameterizing the 

survival and cause specific hazards or parameterizing the 

subdistribution directly.  The first way is called cause-specific 

hazard approach, whereas the second is direct subdistribution 

approach. 

 

For the cause-specific hazard approach, λj(t), j=1,…,J is modelled 

by using well-known parametric model.  This can yield full 

parametric representation of Fj(t).  But, sometimes Fj(t) cannot be 

expressed in explicit form due to integral equation which cannot be 

obtained analytically. 
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To parameterize the subdistribution function directly they used 

Gompertz distribution, which the asymptote of the subdistribution 

might be less than 1.  They claimed that Larson and Dinse (1985) 

model was contained in their formulation. 

      

Parametric regression analysis of subdistribution function is 

proposed by Jeong and Fine (2007).  They extended the 

subdistribution modelling by incorporating covariate.  Gompertz 

distribution is used for the baseline subdistribution of the event of 

interest.   

 

2.9 Literature Review Summary 

 

This chapter has reviewed the relevant published results related to 

the thesis.  Clearly, there are cutpoint determination methods exist 

for continuous and single endpoint survival data, but not for 

competing risks problem.  By utilizing two-sample test and 

regression for subdistribution of competing risks we will develop 

such kind of method for cutpoint determination in competing risks 

framework.  Also, there are numerous regression tree methods 

available for continuous and single endpoint survival data with a 

few extension for handling multivariate and recurrence survival 

data, but not for competing risks problem.  In addition, the effort to 
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combine linear regression and regression tree which yield a hybrid 

model that provides a more efficient way to model data and 

improves its fit is only available for single endpoint survival data, 

and we are interested in extending the method to accommodate 

competing risks.  Lastly, the development of parametric regression 

for subdistribution of competing risks has not been fully developed 

systematically.  The usefulness of cure model in the analysis of 

competing risks data has not been thoroughly investigated. 
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CHAPTER 3 

 

OUTCOME-ORIENTED CUTPOINT DETERMINATION METHODS 
FOR COMPETING RISKS 

 

In medical research, continuous variables are often converted into 

categorical variables by grouping values into two or more 

categories.  The usual approach in clinical and psychological 

research is to dichotomize such continuous variables, whereas in 

epidemiological studies it is customary to create several categories 

allowing investigation of a possible dose-response relation.  It is 

done to make the analysis and interpretation of results simple.  

Furthermore, clinical decision making often requires two classes, 

such as normal/abnormal, cancerous/benign, treat/do not treat, 

and so on.   

 

It is quite often the decision to categorize continuous variable is 

made by the clinical investigator on the grounds that it is more 

understandable than a model which treats the covariate as 

continuous.  Once a decision is made to use a threshold model, the 

problem is to determine the cutpoint between high risk and low 

risk patients.  In some cases, the cutpoint can be determined from 

the literature. Often cutpoints need to be determined from the 

data. Selection of the cutpoint can be made either by a data-

oriented or outcome-oriented approach (Schulgen et al., 1994). In 
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the data-oriented approach, cutpoints are based on the 

distribution of the covariate in the study population.  For example, 

the median could be used.  The outcome-oriented approach picks a 

cutpoint for which the discretized covariate has the largest effect 

on outcome.   

 

In the outcome-oriented approach, there are two different ways to 

decide optimal cutpoints based on the relationships between 

independent variable and outcome variables. First, some 

researchers prefer to use two-sample statistic for comparing two 

groups of data.  The other methods are based on statistic from 

regression analysis.   Both methods had been extended for 

addressing single type of failure time data (Jespersen 1986, Contal 

and O’Quigley 1999, Lausen and Schumacher (1992, 1996), 

Mandrekar et al. 2003 and Tableman and Kim 2004).  

 

Let (Z1,T1),…, (Zn,Tn)  be numbers of n bivariate observations, and 

assume the marginal distribution of Z is continuous.  The effect of 

Z on the dependent variable T is of interest, but the functional 

relationship between Z and T is unknown. A simple way to 

categorize Z is to define two groups of individuals whose Z values 

are either less than or equal, or greater than a certain cutpoint, γ.  

Here we seek a cutpoint which give us the largest difference 

between individuals in the two data-defined groups.  That is, the 
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outcome of the groups with Z < γ is as different from the group with 

Z ≥ γ  as possible based on some statistics. 

 

For the case of single type of failure time response data, T.  The 

procedure search all possible cutpoints; and for each cutpoint, kγ ,  

we compute a particular statistic such as log rank statistic based on 

the groups defined by Z being less than or equal the cutpoint or 

greater than the cutpoint.  That is, at each event time, ti, we find the 

total number of deaths, di, and the total number at risk, ri.  We also 

find the total number of deaths with kZ γ< , +
id  and the total 

number at risk with kZ γ≥ , +
ir .  We then compute the log rank 

statistic 
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where D is the total number of distinct death times.  The 

estimated cutpoint γ̂  is the value of kγ  which yields the 

maximum Sk. 

 

For addressing continuous longitudinal outcome data, Abdolell et al. 

(2002) select the cutpoint corresponding to maximum deviance 

difference.  The method was applied to any set of data A which 
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consists of n cases, where a cutpoint candidate γ divided the cases 

in the parent group A into two groups, i.e. 1st and 2nd group denoted 

by B and C, respectively.  Group B and C consist of Bn  and Cn  

cases, respectively, where nnn CB =+ . 

 

The deviance calculated from data set A can be expressed as  

 ( ) ( )∑
=

=
n

i
iA DD

1
,ˆ,ˆ tt µµ  (3.2) 

The deviance of the partition B and C can be expressed as the sum 

of the deviances of  B and C, so that 
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Figure 3.1. The cutpoint determination based on deviance. 
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For all possible cutpoint kγ  which split A into B  and C , the change 

in deviance between A and the partition B and C provides a measure 

of goodness-of-fit (Clark and Pregibon, 1992), and defined as 
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Take γ̂  to be the split such that 

 

 ( ) ( )ADAD k ,max,ˆ γ∆γ∆ =  (3.5) 

 

The best split is that split on the predictor variable Z which best 

separates the high response values from the low ones, in another 

words it is that split which maximizes ( )AD k ,γ∆ . 

 

The method of categorization which consider the number and the 

location of categories is proposed by O’Brien (2004).  The purpose 

of the study was to obtain tabular summaries of the exposure 

effect, in such away that minimizes a measure of distance between 

the true expected value of the outcome for each subject and the 

estimated average outcome among subjects in the same exposure 

category. 
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Cutpoint determination based on regression model is carried by 

assuming model Cox proportional hazards model of the form  

 λi(t|Z,γ) = λ0(t)exp{βγ × I(Zi<γ)} (3.6)  

Estimate of γ is based on finding the parameter at cutpoint γ which 

maximizes a test statistics for testing H0: βγ = 0.  Possible tests are 

the score, Wald or likelihood ratio tests.  For any of these tests one 

computes the value of test statistics for all possible value of γ in the 

range of data.  One can show that the values of the statistics change 

only at value of γ = Zi where Zi is an observed covariate value so that 

the statistics needs to be computed at only a finite number of 

potential values for γ. 

 

The score, Wald and likelihood ratio tests are computed based on 

the basic proportional hazard partial log likelihood given by 

( ) ( ) ( ){ }∑ ∑∑
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The score statistics for a fixed γ is given by 
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and the Fisher information is given by 
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The value of βγ, γβ̂ , that maximizes (3.7) is the profile maximum 

likelihood estimator for the value of γ.  Estimate of γ are found by 

finding the Zi that maximizes the likelihood ratio test statistics for 

testing βγ = 0 defined by 

 LR(γ) = 2{log[l( γβ̂ ,γ)] – log[l(0,γ)]}  (3.10) 

or by maximizing the Wald test of βγ = 0 given by  

 ( ) ( )γββγ γγ ,ˆˆ2IZ =  (3.11) 

or by maximizing the sore test given by 

 ( ) ( )
( )γ

γ
γ

,0
,0

I
USC =  (3.12) 

Note that maximizing the likelihood ratio statistics is equivalent to 

maximizing the profile likelihood since log[l(0,γ)] is the same for all γ. 

 

All of the above methods are for addressing single type of failure 

time response.  To my knowledge there is no cutpoint 

determination method for competing risks study.  Based on a view 

of extension of single failure time data, it is of interest to develop 
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cutpoint determination method for competing risks by extending 

the existing method for addressing single failure time data.   

 

We propose five methods of dichotomization, one method is created 

based on two-sample statistic for comparing competing risks data, 

and the remaining four methods are created based on regression 

for subdistribution of competing risks.  Monte Carlo simulation is 

conducted to asses the performance of the five proposed methods 

based on some statistical indicators. The procedure to generate 

competing risks survival time data as well as its censored data is 

discussed.  The final part deals with the application of the method 

to contraceptive discontinuation data.  Permutation test is used to 

asses the level of significance associated with the optimal split and 

bootstrap confidence interval is obtained for the optimal cutpoint.    

 

3.1 Cutpoint Determination Method via Two-sample Statistic 

 

In this section we focus on the method based on two-sample 

Gray’s statistic for subdistribution comparison.  Let Z be the risk 

factor of interest measured as a continuous variable and (T,δ) be 

the outcome variable and its indicator of failure type. In some 

cases of competing risk survival analysis, the outcome of interest 

T  can be censored in which the δ = 0.  The population is divided 

into two groups based on the cutpoint γ : subjects with the value 
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of Z less than value of the cutpoint γ and subjects with the value 

of Z greater or equal than cutpoint γ (see figure 3.1).  Let Ω be the 

set of K distinct value of the continuous covariate Z.  Then, based 

on one hypothetical cutpoint γ ∈ Ω, calculate Gray’s statistic for 

making comparison of jth subdistribution between group 1 (Z < γ ) 

and group 2 (Z ≥ γ ).   The optimal cutpoint is that the value of Ω, 

γ, that maximizes the value of 2
Gχ , where 
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γ therefore gives the value of the continuous covariate that gives 

the maximum difference of subdistribution between the subject 

in the two groups defined by the cutpoint. 

 

Figure 3.2. Data partition based on cutpoint γ 
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3.2 Cutpoint Determination Method via Regression Analysis 

 

Consider that observations are n replicates of a time to event T, a 

cause of interest δ, and a covariate Z, (Ti,δi,Zi), i=1,2,…,n.  Let δ =1 

denote the failure cause of interest.  The cutpoint determination 

based on regression approach is developed by adopting the similar 

method for addressing single type of failure time response as 

formulated in (3.6).  The proportional subdistribution hazards 

model with a cutpoint, γ, is defined by 

 ( ) ( ) ( )[ ]γβλλ γ <= ijij ZItZt exp~;~
0  (3.14) 

where βγ and γ are unknown parameters to be estimated, and 

( )•0
~

jλ  is unspecified function.   By considering  

( ) ( )[ ]{ }ijij ZtF
dt
dZt ;1log;~ −−=λ ,  then model (3.14) is equivalent to  

( ) ( )[ ] ( ){ }tZIZtF jiij
*
0

~expexp1; λγβγ ×<−−=  (3.15) 

where ( ) ( )∫=
t

jj duut
0

0
*
0

~log~ λλ . 

Complementary log-log transformation on (3.15)  yielded 

 ( )[ ] ( ) ( )γβλ γ <+= ZItZtFg jj
*
0

~;     (3.16) 

where, g(u) = log(−log(1−u)).  
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In this model, γ is cutpoint, βγ is the effect of having a Z-value less 

than or equal to γ.  The statistical inference for βγ and γ is based on 

the partial log-likelihood function  

 ( ) ( ) ( ) ( )[ ]∑ ∑
= ∈
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


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
<−<==
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where risk set Ri consists of all individuals who have not yet failed 

of the cause of interest or who will never experience this event type:  

( ) ( ){ }.:' ''' jtTtTiR iiiiii ≠∩<∪≥= δ  

 

For fixed γ, the log-likelihood is known to have nice properties.  The 

maximum likelihood estimate γβ̂  for βγ is calculated, and the 

asymptotic distribution of γβ̂  is well known.  The partially 

maximized likelihood can also be denoted as 

 ( ) ( ) ( )γβγβγ γγ
βγ

,ˆ,sup
ˆ

lll ==  (3.18) 

This is a piecewise constant between the unique values of Z which 

is Z(1), Z(2), …, Z(K).   

 

3.2.1 Cutpoint with Maximum Value of Wald Statistic 

 

The Wald statistic for testing the hypothesis H0: βγ =0, γ fixed, is  

 ( )γ

γ

β

β
χ

γ ˆvar

ˆ2
2 =W  (3.19) 
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and the optimal cutpoint γ̂  should be one value corresponding to 

the largest value of 2
γ

χW , i.e. 

 ( ) ( )γ

γ

γ β

β
χχ

γ

ˆ

2
ˆ22

ˆvar

ˆ
sup == WW  (3.20) 

 

3.2.2 Cutpoint with Maximum Value of Likelihood Ratio 
Statistic (Minimum Deviance) 
 

Based on model (3.14) a log likelihood ratio test could also be 

applied for testing the null hypothesis, H0: βγ =0, with γ varying.  

The standard log likelihood ratio test is the ratio between the 

partial likelihood given the null hypothesis and the partial 

likelihood given the estimated parameters under alternative 

hypothesis, and takes the logarithm of the ratio, and multiply it by 

–2, that is 

 ( ) ( )[ ]γβχ γγ
,ˆ022 llLR −−= , (3.21) 

 

where ( )γβγ ,ˆl  is the usual log likelihood when γ is fixed.  For 

varying values of γ, taking supremum of 2
γ

χLR  over a certain range 

of γ will be a natural statistic to test the null hypothesis (Davies, 

1977). 

 ( ) ( )[ ]γβχχ γ
γ

γ
ˆ,ˆ02sup ˆ

22 llLRLR −−==  (3.22) 
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For a given dataset with l(0) fixed, the optimal cutpoint is γ̂  

corresponding to the smallest deviance, ( )γβγ ˆ,ˆ2 ˆl− .  Deviance is the 

summary measure of agreement between model and the data 

(Collet, 1994). 

 

3.2.3 Cutpoint with Maximum Value of Delta Deviance 

 

By considering deviance as a measure of agreement, we can use it 

to find a cutpoint γ̂ .  The procedure is as follows: 

1. For standard set of data N = {(Ti,δi,Zi), i = 1, 2, …, n}, suppose 

there is a candidate as a cutpoint γ that divides the cases into 

N1 = {(Ti,δi,Zi), Zi < γ, i = 1, 2, …, n1} and N2 = {(Ti,δi,Zi), Zi ≥ γ, i = 

1, 2, …, n2}, where N1 and N2 are defined as the first and second 

group resulted by the candidate cutpoint γ.   

2. Fit proportional subdistribution hazard model  

( ) ( ) ( )ijij ZtZt βλλ exp~;~
0=  to data N and obtained its deviance, 

( )β̂2lD −= . 

3. Fit the similar model to N1 and N2  

- fit model ( ) ( ) ( )ijij ZtZt γγ βλλ 10 exp~;~ =  to data N1 and the 

obtained deviance is ( )γγ β11
ˆ2lD −= . 
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- fit model ( ) ( ) ( )ijij ZtZt γγ βλλ 20 exp~;~ =  to data N2 and the 

obtained deviance is ( )γγ β22
ˆ2lD −= . 

4. The improvement of fitting adequacy corresponding to cutpoint γ 

which partition data into N1 and N2 is measured as  

( )γγγ∆ 21 DDDD +−= . 

5. The optimal cutpoint γ̂  is one corresponding to the largest value 

of delta deviance, ( ) ( )γγγ
γ

∆∆ ˆ2ˆ1sup DDDDD +−== . 

 

3.2.4 Cutpoint with Maximum Value of Delta Null Deviance 

 

Instead of using proportional subdistribution hazard model with 

covariate, we can fit the null model without covariate, 

( ) ( )tZt jij 0
~;~ λλ = , and use the similar procedure to find the 

optimal cutpoint γ̂ , i.e. 

( ) ( )0
ˆ2

0
ˆ1

000 sup γγγ
γ

∆∆ DDDDD +−==  

 

3.3 Simulation on Cutpoint Determination 

 

To compare different cutpoint determination methods a Monte 

Carlo experiment were conducted.  One thousand replicates for 

eighteen combinations resulted from three different sample sizes (n 
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= 20, 200, 2000), two different relative risks (RR = exp(βγ) = 2, 5), 

and three different percentage of censoring (pc = 0%, 25%, 50%) 

were generated for the five proposed cutpoint determination 

methods.  Those eighteen scenarios are summarized in Table  3.1.  

 

Table 3.1. Scenarios for comparing five cutpoint determination 
methods  

RR = 2 RR = 5  
n=20 n=200 n=2000 n=20 n=200 n=2000 

pc = 0% 1 2 3 4 5 6 
pc = 25% 7 8 9 10 11 12 
pc = 50% 13 14 15 16 17 18 

Note: number in cell is scenario identity number for corresponding cell 
 
Let Z be the independent variable under consideration, and γ be the 

true cutpoint of Z.  The value of independent variable Z is grouped 

into two subsets, the first group of n/2 subjects takes the integer 

value from 1 to 50, and the second group of n/2 takes the integer 

value from 51 to 100.  Hence, the sample size is n and the true 

cutpoint is γ = 51.   

 

3.3.1 Data Generation 

 

Suppose that there are two types of failure, δ = 1, 2, where the 

subdistribution for first type is 

 ( ) ( )( ){ } ( )[ ]γβγ <−−−−= iZI
i tpZtF exp

1 exp111; , 0 < p < 1 (3.23) 

The value of p related to the probability of first and second failure 

type and βγ  represented the relative risks between 2 groups of 
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individual ( group with Zi < γ and group with Zi ≥ γ ).  The 

subdistribution (3.23) can be expressed in complementary log-log 

form 

 ( )[ ]{ } ( )( )[ ]{ } ( )γβγ <+−−−−=−− ii ZItpZtF exp11loglog;1loglog 1  

or in term of proportional subdistribution hazard model, 

 ( ) ( )
( )[ ]{ } ( )[ ]{ } ( )[ ]γβλ γ <×

−−−−−−
−

= ii ZI
tptp

tpZt exp
exp11logexp11

exp;~
1  

Given the above formulation, the probability of occurrence of first 

type of failure is  

 ( ) ( ) ( ) ( )[ ]γβγδ <−−=∞=== iZI
ii pZFZPp exp

11 11;;1   

and probability of occurrence of type 2 failure is 

 
( ) ( )

( ) ( )[ ]γβγ

δδ
<−=

=−===
iZI

ii

p

ZPZPp
exp

2

1                         

;1  1;2
 

Suppose that conditional probability of failure time given type 2 

failure followed an exponential distribution with rate 

( )[ ]γβγ <iZIexp , that is 

 ( ) ( )[ ]{ }γβδ γ <−−==≤ ii ZItZtTP expexp1,2|  

Hence, the subdistribution for second type of failure is 

 
( ) ( ) ( )

( )( )[ ]{ } ( ) ( )[ ]γβ
γ

γγβ

δδ
<−×<−−=

=×=≤=
iZI

i

iii

pZIt

ZPZtTPZtF
exp

2

1expexp1

;2,2|;
 (3.24) 
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How does one generate data once the subdistribution function is 

known?  Note that the subdistribution function for cause j, j = 1, 2, 

satisfy the following relationship 

( ) ( ) ( ) ( ) 2,1,;,|;,; ==×=≤==≤= jZjPZjtTPZjtTPZtF iiiij δδδ  

where T is overall survival time and δ is the indicator of the cause 

of failure as well as censoring indicator when δ = 0.  It follows that 

the conditional distribution of the survival time, given the cause of 

failure j can be written as follows 

 ( ) ( )
( ) 2,1,

;
;

,| =
=

==≤ j
ZjP

ZtF
ZjtTP

i

ij
i δ

δ  (3.25) 

Data is generated by first selecting the cause of failure with 

probability P(δ = j;Zi) and then generating from the conditional 

distribution (3.25) of time to event given the failure cause.  The 

latter step is done by applying the inverse transformation method. 

 

The summary of the procedure to generate data following model 

(3.23) and (3.24) is as follows: 

1. Set the parameter value of  p and βγ.  Here we use p = 0.66 and 

βγ ∈ {ln(2), ln(5)} where βγ  represents the relative risks between 

two group of observations resulted by cutpoint γ.  

2. Generate Z using previous scenario with true cutpoint γ = 51. 

3. Calculate  

 ( ) ( ) ( )[ ]γβγδ <−−=== iZI
i pZPp exp

1 11;1 , 0 < p < 1 and 
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 ( ) 12 1;2 pZPp i −=== δ . 

4. Generate the  cause  of  failure  from set {1,2} with probability 

{p1,1–p1}. 

5. If cause 1 is selected at step 4, then we generate data from 

conditional distribution of the survival time, given the cause of 

failure 1 

 ( ) ( ){ }[ ] ( )[ ]

( ) ( )[ ]γβ

γβ

γ

γ

δ <

<

−−
−−−−

==≤
i

i

ZI

ZI

i p
tpZtTP exp

exp

11
exp111,1|  

 which by means of inverse transform method the corresponding 

formula for generating data is  

 ( ) ( )[ ][ ] ( )[ ]{ }γβγβ γγ
<−<−+−+−−= ii

ZIZIpUUppT
expexp111lnln , 

 where U is uniform (0,1) random variates, otherwise data is 

generated from 

 ( ) ( )[ ]{ }γβδ γ <−−==≤ ii ZItZtTP expexp1,2|  

 which follows the formula 

 ( )
( )[ ]γβγ <
−

−=
iZI
UT

exp
1ln ,  

 

3.3.2 Censored Data Generation 

 

To incorporate the censoring observation, independent uniform 

censoring over the interval (0,a) was imposed.  Parameter a was 
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chosen to give 25 and 50 percent censoring.  In the sequel, pc 

represents the censoring proportion. 

 

To find appropriate values of the censoring parameter a, we 

suppose that each observation has a survival time T and a 

censoring time C, where T and C are independent of each other.  

We also assume that T has a distribution with a density fT(t) and C 

is uniformly distributed over the interval (0,a).  The probability of 

an observation being censored could be written as  

 

( ) ( ) ( )

( ) ( )

( ) ( )∫

∫ ∫

∫ ∫

∞

∞

∞

<=









=

==<=

0

0 0

0 0

|

dttftCP

dtdccftf

dtdctfcftTTCPp

T

t

CT

t

TCc

 (3.26) 

Taking into account that censoring time C ~ U(0,a), we can rewrite 

equation (3.26) as follows: 

 
( )[ ] ( )

( ) ( )aSdtttf
a

dttftSp

T

a

T

TCc

+=

−=

∫

∫
∞

0

0

1

1
 (3.27) 

where  

 ( )






>

≤≤−=
at

at
a
t

tSC
,0

0,1  

SC(t) and ST(t) are survival functions of the censoring time and 

overall survival time, respectively.  Complex relationships resulting 
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from these calculations make equation (3.27) intractable.  

Therefore, censoring parameters a is obtained by employing 

numerical method.   

 

Given the subdistribution functions in (3.23) and (3.24), then  

( ) ( ) ( )
( )( ){ } ( )[ ]

( )( )[ ]{ } ( ) ( )[ ]γβ
γ

γβ

γ

γ

γβ <

<

−×<−−+

−−−−=

+=

i

i

ZI
i

ZI
iiiT

pZIt

tp

ZtFZtFZtF

exp

exp

21

1expexp1  

exp111

;;;

 

and  

( ) ( ) ( )[ ]{ } ( )[ ] ( )[ ]
( )[ ]

( ) ( )[ ]{ } ( ) ( )[ ]γβ
γγ

γ
γβ

γ

γ

γβγβ

γβ

<

<

−×<−<+

−−−
<+−×−−−

==

i

i

ZI
ii

i
ZI

iT
iT

pZItZI

tp
ZItptp

dt
ZtdFZtf

exp

exp

1expexp                               

exp11
expexp11;;

  (3.28) 

and  

 

( ) ( )
( )( ){ } ( )[ ]

( )( )[ ]{ } ( ) ( )[ ]γβ
γ

γβ

γ

γ

γβ <

<

−×<−−−

−−−=

−=

i

i

ZI
i

ZI
iTiT

pZIt

tp

ZtFZtS

exp

exp

1expexp1   

exp11

;1;

 (3.29) 

For a given value of pc, proportion of censoring, the corresponding 

censoring parameter a is searched by solving the equation (3.27) 

by considering (3.28) and (3.29) for fT(t;Zi) and ST(t;Zi), respectively.   

For group of observations with Zi ≥ 0, equation (3.27) becomes 

 ( )
a

apc
−−

=
exp1  (3.30) 

hence for pc = 0.25 the root is a0.25 = 3.9207, and for pc = 0.50 the 

root is a0.50 = 1.5936. 
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For the second group of observations with Zi < 0, p = 0.66 and βγ = 

ln(2), which correspond to p1 = 0.88, equation (3.27) becomes 

 ( ) ( )
a

aapc
2exp2756.0exp4488.07244.0 −−−−

=  (3.31) 

hence for pc = 0.25 the root is a0.25 = 2.7823, and for pc = 0.50 the 

root is a0.50 = 1.0807. 

 

The other scenario for group of observations with Zi < 0, p = 0.66 

and βγ = ln(5), equation (3.18) becomes 

( ) ( ) ( )

( ) ( )
a

aa
a

aaapc

5exp0259.04exp0806.0  

3exp1108.02exp0856.0exp0441.03471.0

−−−−
+

−−−−−−
=

 

for pc = 0.25 the root is a0.25 = 1.3045, and for pc = 0.50 the root is 

a0.50 = 0.5038. 

The summary is given in Table 3.2. 

 

Table 3.2 Parameter for simulating censored observation for 
comparison of cutpoint determination with p = 0.66 

Scenario pc a 
 

    Zi ≥ 0 0.25 
0.50 

3.9207 
1.5936 

 

βγ = ln(2) 
0.25 
0.50 

2.7823 
1.0807 

 
 
   Zi < 0  

βγ = ln(5) 0.25 
0.50 

1.3045 
0.5038 
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3.3.3 Statistical Indicators for Assessing the Performance of 
Cutpoint Determination Methods 
 

The following passages introduce the definition of each statistical 

indicator which will be applied in comparing the different cutpoint 

methods and in concluding the optimal cutpoints of each variable.  

All of these criteria are very important in measuring the validity of 

an estimate, and have been used in various statistical 

considerations. 

 

(1) Mean 

m

m

i i∑ == 1
ˆ

ˆ
γ

γ , where m is the number of repetitions, and iγ̂  is an 

estimate of the cutpoint parameter γ  from the ith replicate.  The 

mean is an arithmetic average of a set of m estimated cutpoints, 

mγγγ ˆ,...,ˆ,ˆ 21 .  This can be used to estimate the true cutpoint.     

 

(2) Bias  

Bias is the expected deviation of an estimate from the true cutpoint 

γ. In the simulation approach, bias could be estimated by the mean 

difference,  γγ −= ˆ  biasEstimated .  

 

(3) Absolute relative estimated bias (%) 

%100
  

  ×







=

γ
BiasEstimated

BiasARE  
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(4) Estimated standard errors 

( )∑ =
−

−
=

m

i im
SE

1

2ˆˆ
1

1
γγ  

This is a measure of the cutpoint estimator’s variability around its 

mean.  

 

(5) Estimated root mean square errors 

( )∑ =
−=

m

i im
RMSE

1
2ˆ1

γγ  

This criteria is used to asses the variability and the square of the 

bias of an estimator.  A slightly bias estimator which highly 

concentrated about the true cutpoint may be preferable to an 

unbiased estimator that is less concentrated.  Thus, this general 

criterion allows for both bias and unbiased estimators to be 

compared, and it agrees with the variance criterion if attention is 

restricted to unbiased estimators.  
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Table 3.3. The comparison of mean of the estimated cutpoints 
determined by five cutpoint determination methods 
based on 1000 simulations and true cutpoint equal 
to 51 under selected relative risks (exp(βγ) = 2, 5), 
sample sizes (n = 20, 200, 2000) and censoring 
percentage (pc = 0%, 25%, 50%). 

exp(βγ) = 2 exp(βγ) = 5  
n = 20 n = 200 n = 2000 n = 20 n = 200 n = 2000 

pc = 0% 
2
Gχ  54.103 55.447 56.355 52.624 54.217 47.390 
2
Wχ  46.110 55.392 45.929 51.762 44.201 49.269 

D 46.207 45.683 55.029 48.916 56.757 51.103 
∆D 44.234 52.624 44.743 43.191 51.862 43.981 
∆D0 44.048 57.719 52.768 47.353 47.816 44.740 

pc = 25% 
2
Gχ  50.963 49.002 46.160 53.025 54.334 52.195 
2
Wχ  53.047 47.306 53.312 58.014 50.646 56.183 

D 49.470 53.066 47.412 50.691 49.140 43.486 
∆D 42.953 51.100 43.219 47.656 50.338 57.458 
∆D0 42.290 54.789 57.338 50.140 52.387 49.311 

pc = 50% 
2
Gχ  52.054 52.869 47.215 54.240 44.138 45.750 
2
Wχ  54.759 54.689 45.226 59.339 50.060 48.566 

D 50.408 45.449 54.794 52.530 56.523 50.869 
∆D 33.202 49.577 56.696 40.643 48.815 55.934 
∆D0 32.990 44.359 54.408 48.347 51.332 53.881 
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Table 3.4. The comparison of bias of the estimated cutpoints 
determined by five cutpoint determination methods 
based on 1000 simulations and true cutpoint equal 
to 51 under selected relative risks (exp(βγ) = 2, 5), 
sample sizes (n = 20, 200, 2000) and censoring 
percentage (pc = 0%, 25%, 50%). 

exp(βγ) = 2 exp(βγ) = 5  
n = 20 n = 200 n = 2000 n = 20 n = 200 n = 2000 

                   pc = 0% 
2
Gχ  3.103(1) 4.447(3) 5.355(4) 1.624(2) 3.217(3) -3.610(3) 
2
Wχ  -4.890(3) 4.392(2) -5.071(3) 0.762(1) -6.799(5) -1.731(2) 

D -4.793(2) -5.317(4) 4.029(2) -2.084(3) 5.757(4) 0.103(1) 
∆D -6.766(4) 1.624(1) -6.257(5) -7.809(5) 0.862(1) -7.019(5) 
∆D0 -6.952(5) 6.719(5) 1.768(1) -3.647(4) -3.184(2) -6.260(4) 

                       pc = 25% 
2
Gχ  -0.037(1) -1.998(2) -4.840(3) 2.025(3) 3.334(5) 1.195(1) 
2
Wχ  2.047(3) -3.694(4) 2.312(1) 7.014(5) -0.354(1) 5.183(3) 

D -1.530(2) 2.066(3) -3.588(2) -0.309(1) -1.860(4) -7.514(5) 
∆D -8.047(4) 0.100(1) -7.781(5) -3.344(4) -0.662(2) 6.458(4) 
∆D0 -8.710(5) 3.789(5) 6.338(4) -0.860(2) 1.387(3) -1.689(2) 

                      pc = 50% 
2
Gχ  1.054(2) 1.869(2) -3.785(2) 3.240(3) -6.862(5) -5.250(5) 
2
Wχ  3.759(3) 3.689(3) -5.774(5) 8.339(4) -0.940(2) -2.434(2) 

D -0.592(1) -5.551(4) 3.794(3) 1.530(1) 5.523(4) -0.131(1) 
∆D -17.798(4) -1.423(1) 5.696(4) -10.357(5) -2.185(3) 4.934(4) 
∆D0 -18.010(5) -6.641(5) 3.408(1) -2.653(2) 0.332(1) 2.881(3) 

*)Number in parentheses is rank for corresponding scenario.  The resulted rank sums  are   2
Gχ  = 50,   2

Wχ  
= 52,    D = 47, ∆D = 62 and ∆D0 = 59. 
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Table 3.5. The comparison of absolute relative estimated bias 
of the estimated cutpoints determined by five 
cutpoint determination methods based on 1000 
simulations and true cutpoint equal to 51 under 
selected relative risks (exp(βγ)=2, 5), sample sizes (n 
= 20, 200, 2000) and censoring percentage (pc = 0%, 
25%, 50%). 

exp(βγ) = 2 exp(βγ) = 5  
n = 20 n = 200 n = 2000 n = 20 n = 200 n = 2000 

pc = 0% 
2
Gχ  6.084(1) 8.720(3) 10.500(4) 3.184(2) 6.307(3) 7.078(3) 
2
Wχ  9.588(3) 8.612(2) 9.943(3) 1.495(1) 13.332(5) 3.394(2) 

D 9.398(2) 10.425(4) 7.899(2) 4.087(3) 11.289(4) 0.202(1) 
∆D 13.266(4) 3.183(1) 12.269(5) 15.312(5) 1.690(1) 13.763(5) 
∆D0 13.631(5) 13.174(5) 3.466(1) 7.150(4) 6.242(2) 12.274(4) 

pc = 25% 
2
Gχ  0.073(1) 3.918(2) 9.490(3) 3.971(3) 6.537(5) 2.343(1) 
2
Wχ  4.014(3) 7.243(4) 4.533(1) 13.752(5) 0.694(1) 10.163(3) 

D 3.000(2) 4.051(3) 7.036(2) 0.607(1) 3.647(4) 14.734(5) 
∆D 15.778(4) 0.196(1) 15.256(5) 6.557(4) 1.297(2) 12.662(4) 
∆D0 17.078(5) 7.429(5) 12.427(4) 1.686(2) 2.719(3) 3.313(2) 

pc = 50% 
2
Gχ  2.067(2) 3.664(2) 7.422(2) 6.352(3) 13.454(5) 10.295(5) 
2
Wχ  7.370(3) 7.233(3) 11.322(5) 16.351(4) 1.843(2) 4.773(2) 

D 1.160(1) 10.885(4) 7.440(3) 3.001(1) 10.829(4) 0.258(1) 
∆D 34.898(4) 2.791(1) 11.168(4) 20.309(5) 4.284(3) 9.675(4) 
∆D0 35.314(5) 13.021(5) 6.683(1) 5.202(2) 0.651(1) 5.649(3) 

*)Number in parentheses is rank for corresponding scenario.  The resulted rank sums  are   2
Gχ  = 50,   2

Wχ  
= 52,    D = 47, ∆D = 62 and ∆D0 = 59. 
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Table 3.6. The comparison of standard errors of the estimated 
cutpoints determined by five cutpoint 
determination methods based on 1000 simulations 
and true cutpoint equal to 51 under selected 
relative risks (exp(βγ) = 2, 5), sample sizes (n = 20, 
200, 2000) and censoring percentage (pc = 0%, 25%, 
50%). 

 exp(βγ) = 2 exp(βγ) = 5 
 n = 20 n = 200 n = 2000 n = 20 n = 200 n = 2000 

pc = 0% 
2
Gχ  11.362(2) 5.649(5) 4.535(5) 8.251(3) 2.475(4) 2.407(5) 
2
Wχ  14.346(5) 4.679(4) 3.699(4) 9.309(5) 3.186(5) 2.102(3) 

D 13.509(4) 4.082(2) 2.234(1) 7.679(2) 1.982(2) 0.234(1) 
∆D   9.884(1) 2.844(1) 3.369(3) 8.951(4) 2.456(3) 2.307(4) 
∆D0 11.556(3) 4.338(3) 3.099(2) 4.518(1) 0.927(1) 0.988(2) 

pc = 25% 
2
Gχ  25.142(4) 9.574(4) 7.962(4) 12.862(2) 3.909(2) 2.909(1) 
2
Wχ  26.648(5) 10.670(5) 8.546(5) 17.257(4) 7.062(4) 6.959(5) 

D 22.843(3) 9.447(2) 5.515(3) 12.483(1) 4.260(3) 3.029(2) 
∆D 19.092(1) 8.034(1) 4.436(1) 18.330(5) 7.708(5) 4.516(3) 
∆D0 20.208(2) 9.449(3) 5.188(2) 13.782(3) 3.786(1) 4.841(4) 

pc = 50% 
2
Gχ  23.451(3) 9.854(3) 3.544(1) 18.955(2) 8.989(4) 2.285(1) 
2
Wχ  26.765(5) 12.423(5) 11.191(5) 19.293(3) 5.461(3) 5.988(3) 

D 24.264(4) 8.909(2) 9.247(3) 15.663(1) 4.387(2) 7.393(4) 
∆D 22.330(1) 10.827(4) 8.909(2) 23.605(5) 11.839(5) 8.894(5) 
∆D0 22.709(2) 7.628(1) 9.956(4) 20.516(4) 2.966(1) 2.453(2) 

*)Number in parentheses is rank for corresponding scenario.  The resulted rank sums  are   2
Gχ  = 55,   2

Wχ  
= 78,    D=42, ∆D = 54 and ∆D0 = 41. 
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Table 3.7. The comparison of root mean square errors of the 
estimated cutpoints determined by five cutpoint 
determination methods based on 1000 simulations 
and true cutpoint equal to 51 under selected 
relative risks (exp(βγ)=2, 5), sample sizes (n = 20, 
200, 2000) and censoring percentage (pc = 0%, 
25%, 50%). 

exp(βγ) = 2 exp(βγ) = 5  
n = 20 n = 200 n = 2000 n = 20 n = 200 n = 2000 

pc = 0% 
2
Gχ  11.773(1) 7.187(4) 7.016(4) 8.405(3) 4.058(3) 4.338(3) 
2
Wχ  15.150(5) 6.416(2) 6.275(3) 9.336(4) 7.508(5) 2.722(2) 

D 14.328(4) 6.702(3) 4.606(2) 7.954(2) 6.089(4) 0.256(1) 
∆D 11.974(2) 3.273(1) 7.106(5) 11.875(5) 2.602(1) 7.388(5) 
∆D0 13.481(3) 7.996(5) 3.566(1) 5.805(1) 3.316(2) 6.337(4) 

pc = 25% 
2
Gχ  25.129(4) 9.775(3) 9.314(5) 13.014(2) 5.136(3) 3.143(1) 
2
Wχ  26.713(5) 11.286(5) 8.849(3) 18.620(4) 7.067(4) 8.674(5) 

D 22.883(3) 9.665(2) 6.578(1) 12.480(1) 4.646(2) 8.101(4) 
∆D 20.710(1) 8.031(1) 8.955(4) 18.624(5) 7.732(5) 7.879(3) 
∆D0 21.996(2) 10.176(4) 8.189(2) 13.802(3) 4.031(1) 5.125(2) 

pc = 50% 
2
Gχ  23.463(1) 10.025(1) 5.185(1) 19.221(2) 11.305(4) 5.726(2) 
2
Wχ  27.014(3) 12.953(5) 12.588(5) 21.009(4) 5.538(2) 6.461(3) 

D 24.259(2) 10.493(3) 9.991(2) 15.730(1) 7.052(3) 7.390(4) 
∆D 28.547(4) 10.915(4) 10.571(4) 25.767(5) 12.033(5) 10.167(5) 
∆D0 28.975(5) 10.111(2) 10.519(3) 20.677(3) 2.983(1) 3.783(1) 

*)Number in parentheses is rank for corresponding scenario.  The resulted rank sums  are   2
Gχ  = 47,   2

Wχ  
= 69,    D=44, ∆D = 65 and ∆D0 = 45. 
 

3.3.4 Simulation Results 

 

Table 3.3 showed the results of the mean based on 1000 

simulations from first type of failure time, a predictor variable with 

true cutpoint equal to 51 and eighteen scenarios corresponding to 

Table 3.1.  The pattern of the resulted means obtained from all of 

five methods are not quite clear.  We can not distinguish which 

method had closer mean to the true cutpoint 51 compared to the 
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other.  A slightly clear pattern is obtained by using rank.  For each 

scenario we rank the methods.  Rank 1 is given to the method with 

smallest bias, and rank 5 for the largest bias as well.  Since we 

have 18 scenarios, so the smallest rank sum will be 18 and the 

largest is 90.  The rank and rank sum of estimated bias are shown 

in the parentheses and notes of Table 3.4.  Deviance (D) method 

has slightly smaller rank sum of estimated bias compared to 

another which is 47 and its pattern is displayed in Figure 3.3.    
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Figure 3.3. Simulation result in term of bias for eighteen 
scenarios 

 

The absolute relative estimated bias had similar pattern with the 

bias (see Table 3.5).  It is not surprise, since this quantity had 

direct linear relationship with bias.  Therefore, in terms of absolute 

relative bias deviance method also had slightly smaller absolute 

relative bias and smallest rank sum. 
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The result is slightly different for the performance based on 

standard error (see Table 3.6 and Figure 3.4).  The delta null 

deviance (∆D0) has the smallest rank sum and deviance (D) the 

second smallest.  As percentage of censoring increased, the 

standard error also increased.  For each percentage of censoring, 

the standard error decreased as the sample size and relative risk 

increased.   
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Figure 3.4.  Simulation result in term of standard error (SE) 

for eighteen scenarios 
 

The performance based on root mean square error showed the 

advantage of deviance (D) method (see Table 3.7 and Figure 3.5).  

Deviance method gets the best result with the smallest rank sum, 

and delta null deviance for the second smallest rank sum, 

although the pattern is almost similar with the performance based 

on SE. 
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Figure 3.5.  Simulation result in term of root mean square 

error (RMSE) for eighteen scenarios 
 

Overall, comparing the results from all of the indicators, the 

deviance method has the smallest rank sum among the studied 

methods in deciding an optimal cutpoint (see Table 3.8).  We can 

get more insight on the performance of five proposed methods 

through the overall rank sum, because it contains information of 

all four indicators. 

 
Table 3.8. Overall rank sum for five cutpoint determination 

methods. 
Rank Sum of the Criteria  

Bias ARE Bias SE RMSE Overall 
2
Gχ  50 50 55 47 202 
2
Wχ  52 52 78 69 251 

D 47 47 42 44 180 
∆D 62 62 54 65 243 
∆D0 59 59 41 45 204 
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3.4 Application: Contraceptive discontinuation data 

 

To illustrate our approach we consider a sample of 2631 women 

drawn from the database of the Indonesian Demography and 

Health Survey (IDHS) 2002. This is the national retrospective 

database consisting of data on time to contraceptive 

discontinuation.  All subjects were investigated on the history of 

last episode of contraceptive discontinuation.  We observed the 

length of time of the last contraception use, and we focused on 

three types of discontinuation in a competing risks framework. The 

outcomes we considered were failure, contraceptive abandonment 

while in need of family planning, and switching to another 

contraceptive method. A discontinuation is defined as a 

contraceptive failure if the woman reported that she became 

pregnant while using the method.  Thus, this definition includes 

both failures of the method itself and failure owing to incorrect or 

inconsistent use of the method. Adoption of different method 

within one month of discontinuation is classified as a method 

switch, whereas continuation of nonuse for one month or more is 

classified as contraceptive abandonment. Clearly, contraceptive 

failure is of interest because it leads directly to an unintended 

pregnancy.  Contraceptive abandonment is also important outcome 

to study because it leads to immediate risk of unintended 

pregnancy. Method switching also may lead to an increased risk of 
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unintended pregnancy if use of a modern method is discontinued 

in favor of a less effective, traditional method. Contraceptive failure 

is somewhat different from the other two outcomes in that it 

presumably is an unintentional event, whereas contraceptive 

abandonment and switching suggest some decision-making and 

choice on the part of the woman. For dichotomization procedure we 

considered only one covariate which supposed to be able to explain 

the rate of discontinuation which was age of the women at the start 

of the episode of use (years).  Here we used deviance method, since 

it was slightly better than the rest based on simulation result in 

section 3.3.   

 

3.4.1 Optimal Cutpoint 

 

A cutpoint determination method based on deviance statistic was 

implemented in order to systematically partition the subjects into 

two groups as determined by the age at start of contraceptive use.  

The optimal cutpoint selected was one associated with the 

observed minimum deviance achieved by splitting the subjects into 

two age groups.  For the time to the occurrence of contraceptive 

failure as dependent variable, an age at start of contraceptive use 

threshold of 34.167 years was associated with a minimum 

deviance of 1061.321 (see figure 3.6).  The optimal cutpoint on age 

at start of contraceptive use for the second and third type of 
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discontinuation, which were abandonment and switching, was 38 

years with their corresponding minimum deviance 13796.55 and 

14061.17, respectively (see Figures 3.7 and 3.8).   
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Figure 3.6. The plot of cutpoint criterion D for dependent 

variable time to occurrence of failure against 
cutpoint on age.  D bottoms at age 34.167 years. 
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Figure 3.7. The plot of cutpoint criterion D for dependent 
variable time to occurrence of abandonment 
against cutpoint on age.  D bottoms at age 38 
years. 

 

Dobserved = 1061.321 

Dobserved = 13796.55 
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Figure 3.8. The plot of cutpoint criterion D for dependent 

variable time to occurrence of switching against 
cutpoint on age.  D bottoms at age 38 years. 

 

 

3.4.2 Permutation Test 

 

It is useful to assess the strength of evidence of an association 

between the response and predictor variable which is categorized 

into a dummy variable using a cutpoint obtained from the results 

of cutpoint determination method.  A distribution-free permutation 

test is used to asses the strength of evidence of an association 

between predictor variable which has been dichotomized into ‘high’ 

and ‘low’ levels via the cutpoint determination method proposed in 

this chapter and the response variable (Venables and Ripley 2002, 

Mielke and Berry 2007).  We implemented the permutation test in 

the following steps: 

Dobserved = 14061.17 
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1. Calculate Dobserved, the optimal deviance obtained from the 

observed data. 

2. Permute the observed data to obtain B permutation data sets 

Nb, where b = 1, …, B.  This is simply achieved by randomly 

permuting the predictor values while holding the response 

variable fixed.    

3. For each of these data sets, compute the optimal deviance 

statistic Db, where b = 1, …, B. 

4. The p-value is obtained from the permutational distribution of 

the optimal deviance statistic.  It is calculated as 

B
DDp observed# <

=  

 

For sample of size n, we can make up to n! permutation sample.  It 

is typically computationally impossible to obtained all permutation 

sample of large size of the observed data and to compute an 

optimal deviance statistic for each of those data sets.  Therefore, as 

an approximation, we can choose B sufficiently large in order to 

achieve as many significant digits as desired for the p-value. 

 

Here we performed a permutation test to provide an assessment of 

the strength of evidence of association between: 

1. age at start of contraceptive use (dichotomized at 34.167) and 

probability of discontinuation due to failure. 
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2. age at start of contraceptive use (dichotomized at 38) and 

probability of discontinuation due to abandonment. 

3. age at start of contraceptive use (dichotomized at 38) and 

probability of discontinuation due to switching. 
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Figure 3.9. Permutation plot of the sequence of Db for time to 

occurrence of failure as dependent variable, b = 1, 
…, 1000. 

 

A total of 1000 permutations of the data were obtained, and for 

each permutation a sequence of deviance corresponding to the 

sequence of possible binary splits was computed.  From each of 

these 1000 sequences, the optimal split was selected, resulting in a 

sequence of 1000 optimal splits; each optimal split was associated 

with an optimal deviance.  The sequences of optimal deviance for 

the 1000 permutations of the three types of discontinuation were 

Observed min Deviance : 1061.321 
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plotted in Figure 3.9-3.11.  From 1000 results there is no 

permutation produced an optimal deviance less than the observed 

value.  In the other words, the p-value of the test is less than 

0.001.  It means that there is strong evidence on the association of 

age with all the three types of discontinuation time. 
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Figure 3.10. Permutation plot of the sequence of Db for time to 

occurrence of abandonment as dependent 
variable, b = 1, …, 1000. 

 

Observed min Deviance : 13796.55 
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Figure 3.11. Permutation plot of the sequence of Db for time 

to occurrence of switching as dependent variable, 
b = 1, …, 1000. 

 
 

3.4.3 Bootstrap Confidence Interval 

 

Here we introduce the steps for the construction of bootstrap 

confidence intervals for true cutpoint γ.  The advantage of the 

bootstrap is that there is no assumption about the distribution of 

optimal cutpoint. 

 

We considered p-Bootstrap method based on the percentiles of the 

bootstrap distribution suggested by Efron and Tibshirani (1993) to 

construct the confidence intervals for true cutpoint γ.  Other 

existing alternatives for the p-Bootstrap, not considered in this 

thesis, also could be used to construct confidence intervals. For a 

Observed min Deviance : 14061.17 
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complete review of available approaches to bootstrap confidence in-

tervals see Efron and Tibshirani (1993) and Davison and Hinkley 

(1997). 

 

Let N = (t,δ,z) be the observed data where t = (t1, ..., tn) is the vector 

of lifetime data, δ = (δ1, …, δn) is the vector of indicators of censored 

observations and z = (z1, ..., zn) is the vector of predictor variable.  

The p-Bootstrap procedure is as follows: 

1. Random select, with replacement from N, a bootstrap sample 

( *
1t , *

1δ , *
1z ), ..., ( *

nt , *
nδ , *

nz ). 

2. From the bootstrap sample in 1, find the optimal cutpoint *γ̂ . 

3. Repeat steps 1 and 2, B times. 

4. From *γ̂  = ( ) ( ) ( )( )**
2

*
1 ˆ...ˆˆ Bγγγ ≤≤≤  find a 100×(1 − α)% bootstrap 

confidence interval given by ( ) ( )( )**
21

ˆ,ˆ qq γγ  where q1 = [(α/2)B] and q2 

= B − q1. 

 

A bootstrap 90% percentile interval was computed to provide an 

assessment of the accuracy of the observed optimal cutpoint on 

age at start of contraceptive use of: 

1. 34.167 years for discontinuation due to failure. 

2. 38 years for discontinuation due to abandonment. 

3. 38 years for discontinuation due to switching. 
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A total of 1000 bootstrap data sets were generated from original 

data set.  For each bootstrap data set, we employed the deviance 

cutpoint determination method to obtain the optimal deviance and 

its associated age cutpoint.  Histograms of the 1000 replicates for 

three types of contraceptive discontinuation are presented in 

Figure 3.12 – 3.14.  For first type of discontinuation, which is 

failure, the 90% bootstrap percentile interval for the observed 

optimal cutpoint on age at start of contraceptive use is 

(31.58,38.08).  This confidence interval is slightly moderate than 

those two others, which are (35.92,40.75) and (17.83,40.75) for the 

occurrence of abandonment and switching, respectively.  Figure 

3.12 showed that most of cutpoint is located between the range of 

age 30 and 40.  The shorter range is for abandonment which is 

between age 37 and 39, even though there are several cutpoints 

located below and above those bounds (Figure 3.13).  Different 

result is obtained for the cutpoint for switching which reveals small 

portion of cutpoint located at young age about 18, and the rests 

are around age 38 (Figure 3.14). 
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Figure 3.12.  Histogram of 1000 bootstrap replications of the 
optimal cutpoint γ̂  on age at start of 
contraceptive use for the discontinuation due to 
failure.   
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Figure 3.13.  Histogram of 1000 bootstrap replications of the 
optimal cutpoint γ̂  on age at start of 
contraceptive use for the discontinuation due to 
abandonment.   
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Figure 3.14. Histogram of 1000 bootstrap replications of the 

optimal cutpoint γ̂  on age at start of 
contraceptive use for the discontinuation due to 
switching.   

 

3.5 Summary 

 

This chapter develops new cutpoint determination method for 

handling competing risks survival data.  A comprehensive 

simulation study on cutpoint determination methods indicates that 

the Deviance procedure has better statistical indicators across a 

variety of methods.  The application of Deviance method on 

contraceptive discontinuation data showed its advantages to 

search age cutpoint corresponding to failure, abandonment and 

switching event.   
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Since there is no statistical distribution for minimum of Deviance, 

we assessed its significance by using permutation test.  With 1000 

repetitions, we cannot find smaller minimum Deviance compared 

to the obtained one, so the p value for the obtained minimum 

Deviance is less than 0.001.   

 

Bootstrap procedure was employed for constructing the confidence 

interval of obtained cutpoint.  The effect of end-cut preference was 

shown emerged in the result of bootstrap histogram.  This effect 

indicated there is a small portion of optimal cutpoint located near 

to the boundaries at youngest and oldest age of women.  Hence, 

the obtained confidence interval may be wider than it should be.     
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CHAPTER 4 
 
 

TREE-STRUCTURED REGRESSION FOR SUBDISTRIBUTION OF 
COMPETING RISKS 

 
 
 
In this chapter, survival trees are generalized to the competing 

risks case.  Trees for competing risks outcome are grown by 

minimizing deviance.  Therefore, only internal nodes have 

associated deviance statistics.  The tree structure is different from 

CART because, for original trees, each node, either terminal or 

internal, has an associated impurity measure.  This is why the 

CART pruning procedure is not directly applicable to such type of 

trees.  However, Segal’s pruning algorithm (Segal, 1988), which 

exerts little computational burden, has resulted in trees that have 

become well-developed tools. 

 

Our modified tree technique not only provides a convenient way of 

handling competing risks survival data, but also extend the applied 

scope of tree-structured methods in a more general sense, 

especially for those situations where defining prediction error 

terms is relatively difficult.  Growing trees by a deviance statistic, 

together with the Segal’s pruning, offer a feasible way of performing 

tree analysis. Moreover trees by deviance statistic derived from 

likelihood-based statistic have an easy extension to handle 

nonstandard data structures, including binary, categorical, 
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longitudinal data, etc.  For instance, Su et al. (2004) studied tree 

methods by maximizing log-likelihood for continuous response 

data. 

 

In our proposed competing risks survival trees, the between-node 

difference is measured by a deviance statistic, which is derived 

from a likelihood ratio test statistic in a subdistribution hazards 

regression approach to competing risks survival data developed by 

Fine and Gray (1999).  Reasons accounting for this choice is: 

1.  The subdistribution approach obviously gives the information 

about proportion of patient experiencing a cause of interest; 

2. By considering this splitting procedure as an important aspect 

of tree regression, we should then utilize the splitting procedure 

which has been proven to have good performance.  From 

chapter 3, the cutpoint determination based on deviance is 

better than the four other statistics. 

 

In Section 4.1, the deviance statistic for the significance of a typical 

split is first derived.  Subsequently, how to use the deviance 

statistic to grow a large tree is illustrated.  Section 4.2 describes a 

pruning procedure adapted from Segal’s (1988) approach. In 

Section 4.3 we apply the method to the contraceptive 

discontinuation data.  In Section 4.4 the performance of the 

method is assessed by simulation studies.  
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4.1 Growing a Large Tree 

 

The initial tree is grown by considering the used of splitting 

statistic and stopping rule.  Splitting statistic is needed to make 

sure that the resulted data partitioning is the best one.   The 

stopping rule is to maintain the effectiveness of the growing 

procedure.   

 

4.1.1 The Splitting Statistic 

 

We consider a typical setting for competing risks survival data. 

Suppose that there are n individuals and each subjected to J (J ≥ 2) 

cause of failures.  Let *
iT  be the time when ith unit experiences one 

of the jth type of failures, and let Ci be the corresponding censoring 

time, where j = 1, 2, …, J; i = 1, 2, …, n.  The sample consists of 

the set of vectors {(Ti,δi,Zi) : i = 1, 2, ..., n}.  Here, Ti = min( *
iT , Ci) is 

the observed failure times; δi = I( *
iT  < Ci), where I(•) is the indicator 

function; p
iZ ℜ∈  denotes the covariate vector for the ith unit.  

Since recursive partitioning handles covariates one by one, we 

assume p = 1 for the ease of illustration.  In order to ensure 

identifiability, we also assume that the failure time *
iT  is 

independent of the censoring time Ci conditional on the covariate 

Zi, for any i = 1, …, n. 
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In the subdistribution approach by Fine and Gray (1999), the 

subdistribution hazard for each type of failure is formulated with 

the proportional hazards model (Cox, 1972).  Since we only 

consider splitting on a single covariate, the subdistribution hazard 

function ( )tλ~  is assumed to take the following form: 

 ( ) ( ) ( )[ ] JjZItZt i
j

jij ,...,1,exp~;~
0 =<= γβλλ γ  (4.1) 

where ( )tj 0
~λ  is an unspecified baseline subdistribution hazard 

function and j
γβ  is an unknown regression parameter corresponds 

to cutpoint γ and cause of failure j.  We assume that there is a 

change point effect of Zi on the subdistribution hazard function 

with cutpoint γ. 

 

When there is no censoring, j
γβ  can be estimated in exactly the 

same way as in the Cox model for right-censored data using a 

modified risk set.  Here the risk set, R(t), at time t is all individuals 

yet to experience any event plus all those individuals who has 

experienced event other than the jth event at a time prior to t.  The 

risk set leads to a partial likelihood: 
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The log partial likelihood is 
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Based on counting process Ni(t) = I(Ti ≤ t, δi = j) and Yi(t) = 1 − Ni(t−) 

the score function when there is no censoring is  

 

( ) ( )
( ) ( ){ }

( ){ } ( )∑∫ ∑
∑

=

∞

∈

∈













<

<<
−<=

n

i
i

sRk k
j

k

sRk k
j

kk
i

j sdN
ZIsY

ZIZIsY
ZIU

1 0 )(

)(

exp)(

exp)(

γβ

γβγ
γβ

γ

γ

γ  (4.4) 

 

which is of the form of the usual Cox score function.  Value of 

j
γβ  that solves the score equation (4.4) is the desired estimators.  

In this case, the usual information calculations can be used to 

find the estimated standard errors of the estimated j
γβ .   

 

When there is right censoring an inverse probability of 

censoring weighting technique is used.  Here we let C(t) be the 

probability of not being censored at time t.  This C(t) is 

estimated consistently by the usual Kaplan-Meier estimator 

that treats occurrences of competing risk as censored 

observations and occurrences of censoring as an event.  We 

define a time dependent weight function, wi(t) for each 

observation by 

 ( )
( )
( )( ) ( )







=
otherwise0,

observable is  if,
,minˆ

ˆ
tN

TtC
tC

tw i
ii  (4.5) 
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Note that wi(t) is nonzero for censored observations up to the time 

of censoring.  Using this weight, an estimating equation for j
γβ  is 

given by 

( ) ( )
( ) ( ){ }
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Given the estimated j
γβ , the deviance is defined as ( )jl γβ̂2− .  This is 

the summary measure of agreement between model and the data, 

where the smaller value corresponds to better goodness of fit  

(Collet, 1994). 

 

The estimated variance of j
γβ̂  is given in Fine and Gray (1999).  

They suggested using a “sandwich” estimator. 

 

The splitting function is defined as ( ) ( )jlhR γβγ ˆ2, −= , which is 

called deviance.  This statistic can be derived from likelihood 

ratio for testing the significance of j
γβ  which j

γβ̂  is its maximum 

likelihood estimator.  In summary, when a tree is constructed, a 

proportional subdistribution hazard structure is assumed 

within each node.  The splitting function ( )hR ,γ  is evaluated at 

each allowable split, and the best cutpoint γ* is chosen such 

that ( ) ( )hRhR h ,min*, γγ γ ∈= .  This process is applied recursively 

until all the nodes cannot be further split. 
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4.1.2 Algorithm to Grow Tree 

 

To grow a tree, the deviance statistic is evaluated for every possible 

binary split of the predictor space Z.  The split, s, could be of 

several forms: splits on a single covariate, split on linear 

combinations of predictors, and boolean combination of splits. The 

simplest form, in which each split relates to only one covariate, can 

be described as follows: 

1. if Zk is ordered, then the data will be split into two groups 

specified by { Zk < γ} and { Zk ≥ γ} respectively; 

2. if Zk is nominal, then any subset of the possible nominal values 

could induce a split. 

 

The "best split" is defined to be the one corresponding to the 

minimum deviance statistic. Subsequently the data are divided 

into two groups according to the best split.  

 

Apply this splitting scheme recursively to the sample until the 

predictor space is partitioned into many regions. There will be no 

further partition to a node when any of the following occurs: 

1. The node contains less than, say 10 or 20, observations, if the 

overall sample size is large enough to permit this. We suggest 

using a larger minimum node size than used in CART where the 

default value is 5. As shown by LeBlanc, M. and Crowley, J.  
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(1993), even for large sample sizes, "end-cut preference" (see 

Section 11.8, CART) can be a problem.  He showed that it is 

important to use a larger minimum node size in order to avoid 

this unattractive effect; 

2. All the observed times in the subset are censored, which results 

in unavailability of the deviance statistic for any split; 

3. All the observations have identical covariate vectors or the node 

has only complete observations with identical survival times. In 

these situations, the node is considered as 'pure'. 

 

The whole procedure results in a large tree Γ0, which could be used 

for the purpose of data structure exploration. 

 

4.2 Algorithm to Prune Tree 

 

The idea of pruning is to iteratively cut off branches of the initial 

tree, Γ0, in order to locate a limited number of candidate subtrees 

from which an optimally sized tree is selected.  Besides the cost-

complexity pruning of CART (Breiman et al. 1984), many pruning 

methods have been proposed in the literature.  See, for example, 

Nibett and Bratko (1986), Mingers (1987) and Quinlan (1993).  

Those methods frequently used cross-validation and bootstrap 

resampling techniques to determine an appropriate tree size.  

However, the extensive computation of our proposed method 
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forbids the application of those methods.  Therefore, to our 

proposed method, we adopt Segal’s pruning algorithm (Segal, 1988) 

which exerts little computational burden.  The step for adopting 

this algorithm is as follows: 

- Initially grow a large tree. 

- To each of the internal nodes in the original tree, assign the 

maximal splitting statistics contained in the corresponding 

branch.  This statistic reflects strength of linking for the 

branch to the tree. 

- Among all these internal nodes, finds the one with the smallest 

statistic.  That is, find the branch that has the weakest link 

and then prune off this branch from the tree. 

- The second pruned tree can be obtained in a similar manner 

by applying the above two steps to the first pruned tree. 

- Repeating this process until the pruned tree contains only the 

root node, a sequence of nested trees is finally obtained.   

 

The desired tree can be obtained by plotting the size of these trees 

against their weakest linking statistics.  Usually the tree 

corresponding to the “kink” point in the curve is chosen as the best 

one. 
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4.3  Data Analysis 

 

As an illustration of competing risks trees, we revisit the 

contraceptive discontinuation data drawn from the database of the 

Indonesian Demographic and Health Survey (IDHS) 2002.    Beside 

age of start of contraceptive use, we also consider some additional 

covariates which suppose to be able to explain the rate of 

discontinuation. The important one is the contraceptive method. 

For this analysis, contraceptive methods were grouped into three 

categories: pills and injectables, IUDs and implants, and other 

modern methods (mainly condoms). The other covariates were 

woman’s education (primary or lower, secondary, university), 

household social and economic status (1 – 7 scores), area of 

residence (urban, rural), and religion (Moslem, non-Moslem). 

 

4.3.1 Subdistribution Hazard Regression 

 

First, result of subdistribution hazard regression model by Fine 

and Gray (1999) is presented for comparison (Table 4.1).  For the 

first type of risk (i.e., failure), the result in Table 4.1.(a) shows that 

Age and IUDs/Implants are statistically significant with p-value 

less than 5%.  The older women tend to have lower discontinuation 

rate due to failure, and the IUDs/Implants user have lower 
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discontinuation rate due to failure than the user of the other 

methods.   

 

Table 4.1.(b) showed the effect of covariate on subdistribution 

hazard of discontinuation due to abandoning.  Age, Education and 

Method of contraception affected the abandoning rate. The sign of 

coefficient shows that the older women tend to have higher 

abandoning rate than younger ones. Whereas, the women with 

primary or lower education have high rate of abandoning, because 

both signs of coefficients for education covariates are negative.  

Again, the women with IUDs/implants have lower rate of 

abandoning.   

 

For the third risk, switching, factors of education and contraceptive 

methods are two covariates which are statistically significant (see 

Table 4.1.(c)) . 
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Table 4.1. Subdistribution hazard regression for contraceptive 
discontinuation data  

 
(a) Type 1 risk: failure 
 
 Variable  Coefficients  SE of Coefficients  P-value 
 
 Social Economic Status   -0.06316   0.08329  0.450  
  Age   -0.03931   0.01601   0.014 
  Residence       0.27060   0.28730   0.350 
  Religion     0.49220   0.59200   0.410 
  Secondary   -0.15390     0.36120   0.670 
  University    0.32110    0.39970   0.420 
  IUDs/Implants   -1.09200   0.51880   0.035 
  Other Methods   -0.06132  0.72440   0.930 
 
 
 (b) Type 2 risk: abandoning 

 
 Variable  Coefficients  SE of Coefficients  P-value 

 
 Social Economic Status    0.01883  0.023120 0.42000  
  Age    0.01544  0.005143   0.00270 
  Residence       0.06970  0.070450   0.32000 
  Religion    -0.01111 0.191700   0.95000 
  Secondary   -0.20910   0.083210   0.01200 
  University   -0.39600 0.111400   0.00038 
  IUDs/Implants   -0.18280 0.084400   0.03000 
  Other Methods   -0.32410 0.264000   0.22000 
 
 
 (c) Type 3 risk: switching 

 
 Variable  Coefficients  SE of Coefficients  P-value 

 
 Social Economic Status   -0.039020 0.02210 0.077000  
  Age   -0.004583 0.00475   0.330000 
  Residence       0.028400  0.07453   0.700000 
  Religion    -0.110000 0.19570   0.570000 
  Secondary    0.207500    0.09556   0.030000 
  University    0.509800  0.11660   0.000012 
  IUDs/Implants   -0.094370 0.08305   0.260000 
  Other Methods    0.663900 0.20270   0.001100 
 



 113 

4.3.2 Regression Trees for Subdistribution Hazard 

 

Type 1 risk: failure 

 

The large initial tree Γ0 was grown with minimum node size 100, or 

event number of type j (j = 1, 2, 3) at least 10.  To avoid the end-cut 

preference, we set the minimum number of observations to be split 

restricted to be at least 20 (LeBlanc and Crowley, 1993).  The initial 

tree for discontinuation due to failure has 12 terminal nodes as 

displayed in Figure 4.1.  By comparing Table 4.1(a) and Figure 4.1, 

it is not surprising to see the first cut on age, since age is the most 

significant covariate in subdistribution hazard regression for 

discontinuation due to failure.  The cutpoint age is 34.17 years 

with minimum deviance statistic 1061.32.  Then the group of 

younger women is split according to IUDs/implants status, the 

other significant covariate in subdistribution hazard regression, 

with deviance statistic 990.32.  Again age emerged as the splitter 

for the non-IUDs/implants user with the cutpoint 29.55 years 

(deviance statistic 911.09).  The rest of the splitting is according to 

the other covariates. 

 

The Segal’s pruning approach would involve in the building up of a 

sequence of nested subtrees in which one of them will be picked up 

as the best tree.  The plot of the size of subtree and the linking 
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statistic is shown in Figure 4.2.  The “kink” point located at node 6 

corresponds to subtree of size 4.  Hence the final tree is of size 4 as 

shown in Figure 4.3.  This tree leads to 4 groups of women, namely 

old women (age ≥ 34.17 years, node 3), young women (age < 34.17 

years) with IUD/implant method (node 5), medium age women 

(29.55 ≤ age < 34.17) with non-IUD/implant method (node 7), and 

younger women (age < 29.55) with non-IUD/implant method (node 

6).  The subdistribution functions for those 4 groups are shown in 

Figure 4.4.  The group of old women has the least failure incidence 

during the study period, and the medium age women with non-

IUD/implant method experienced the most failure incidences.  

Approximately there are 7 percent of medium age women with non-

IUD/implant method experiencing the failure of contraceptive 

method in the end of study period.   

 



 115 

 

Figure 4.1. Initial tree for discontinuation due to failure (node 
size, split and corresponding deviance statistic)  
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Figure 4.2.   Nested subtrees of Segal’s pruning for 

discontinuation due to failure (point label is 
internal node number)  

 
 
 
 
 
 

 

Figure 4.3. Final tree for discontinuation due to failure 

kink 
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Figure 4.4. Failure subdistribution curve for 4 groups of 
women 

 

 

Type 2 risk: abandoning 

 

The initial tree for risk of type 2 contains 12 terminal nodes (Figure 

4.5).  The first split was on age at cutpoint 38 years.  The group of 

younger women was further split by age at cutpoint 17.67 years.  

The medium age (17.67 ≤ age < 38 ) was further split by status of 

primary education.  Contraception methods, residence and religion 

were not present as splitter in the initial tree.  This result is slightly 

inconsistent with subdistribution hazard regression (Table 4.1(b)) 

which reveals that IUD’s/implant’s status is one of significant 

factors of probability to abandonment. 
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Figure 4.5. Initial tree for discontinuation due to abandoning 
(node size, split and corresponding deviance 
statistic) 

 

The best tree for the probability of abandoning has 2 terminal 

nodes after pruning at node 2.  Figure 4.6 shows that the “kink” 

was located at node 2, which means node 2 was the weakest 

branch, so it can be pruned off.  The two final groups were old 

women (age ≥ 38, node 3) and younger ones (age < 38 years, node 
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2), presented in Figure 4.7.  In terms of probability to 

abandonment the result of grouping was consistent with 

subdistribution hazard regression (Table 4.1(b)), because this 

group of older women has greater probability to abandonment 

compared to the younger one (see Figure 4.8).  However, when 

node 2 was further split into node 4 and node 5, we find that node 

4 (very young women with age < 17.67 years) has the most risk to 

abandonment up to about 4 years (dashed line in Figure 4.9).  This 

is rational since the younger women have a strong willingness to be 

pregnant, so they most probably abandon the contraceptive 

methods.   
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Figure 4.6. Nested subtrees for abandoning risk (point label is 

internal node number) 
 
 
 
 

 

 

kink 



 120 

 

 

 

Figure 4.7. Final tree for discontinuation due to abandoning 

 

 

 

 
Figure 4.8. Subdistribution function of abandoning for 2 

groups of women 
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Figure 4.9. Subdistribution function of abandoning for 3 
groups of women after breaking down node 2 into 
node 4 and node 5 

 

 
Type 3 risk: switching 

 

Regression tree analysis on time to discontinuation due to 

switching gave inconsistent result compared to its result based on 

subdistribution hazard regression (Figure 4.10 and Table 4.1(c)).  

The result showed that age appeared as the first splitter, whereas it 

was not a significant covariate in subdistribution hazard 

regression.  The initial tree with eleven terminal nodes presented 

age as first splitter, breaking the subjects into old and younger 

women.  Further split for the younger group of women was based 

on education which split the subjects into university-educated 

node 3: Age ≥ 38 
node 4: Age < 17.67 
node 5: 17.67 ≤ Age < 38 
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women and secondary or lower-educated women. The splitting on 

younger university-educated women was according to 

contraceptive method (IUDs/Implants versus other methods).  For 

the younger secondary or lower-educated women, node 4 was 

further split by age at cutpoint 17.25 years, and so on (Figure 

4.10). 
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Figure 4.10. Initial tree for discontinuation due to switching 
(node size, split and corresponding deviance 
statistic) 
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The pruning strategy offers a sequence of subtree as presented in 

Figure 4.11.  The “kink” is located at node 4 which gives a three-

node final tree (Figure 4.12).  The first group is old women (age ≥ 

38 years) at node 3.  The second is younger women with non-

university education level (node 4). The third group is the younger 

women with university education level (node 5).  From Figure 4.13 

we obtain some important points.  The younger university-

educated women (node 5) were the most probable to switch, 

whereas the older women on node 3 were the least probable to 

switch during the study period.  It might be related to their 

knowledge on the availability of other contraceptive methods.  

Hence, for the university-educated women, instead of using only a 

particular method they can easily switch to another method 

because of this knowledge.  
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Figure 4.11. Nested subtrees for switching risk (point label is 

internal node number)  
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Figure 4.12. Final tree for discontinuation due to switching 

 
Figure 4.13.  Subdistribution of switching curve for 3 groups of 

women 
 

4.4 Simulation Studies 

 

This section contains simulated experiment design to investigate 

the performance of the tree procedure in detecting data structure 

under a variety of scenarios.   
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Data sets are generated from the following subdistribution models 

using the methods described in Section 3.3: 

( ) ( )( ){ } ( ) ( )[ ]02exp
211

212111exp111,; >+>−−−−= ii ZIZI
ii tpZZtF ββ , 0 < p < 1 (4.7) 

( ) ( ) ( )( )[ ]{ }
( ) ( ) ( )[ ]02exp

2221212

2121111  

02expexp1;
>+>−×

>+>−−=
ii ZIZI

iii

p

ZIZItZtF
ββ

ββ
 (4.8) 

This setting fulfill proportional subdistribution hazard model for 

first cause of failure only.  To have a better evaluation of the ability 

to correctly identify these groupings, two extraneous variables (Z3 

and Z4), which are not related to outcome, are also included in the 

data.  The variables Z1 and Z4 have discrete uniform distribution 

taking values from 1 to 5, and Z2 and Z3 are binary variable taking 

value 0 and 1 with the same probability.  This scenario leads to 

true tree Γ1 or Γ2 below. 

 
Figure 4.14.  True tree for simulation 

 

For (p,β11,β12,β21,β22) = (0.6, 1, −1, 1, 1) resulting in 60% type 1 

failure and 40% type 2 failure.  In addition to the complete data, 

censoring times are also introduced independently from a uniform 

distribution (see Section 3.3.2 and Fine and Gray(1999)) to obtain 
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approximately 23%, 47% and 71% censoring.  Each scenario has 

1000 replications and each replication consist of 400 competing 

risks survival time data.   

 

We examined the capability of the method to identify the data 

structure of true tree (figure 4.14).  The resulted trees were 

categorized according to their ability to identify correct data 

structures.  From the simulation we classified three categories of 

the capability: 

1. “Correct”, if the resulted tree contains the true tree. 

2. “Partially recognized”, if the optimal tree contains the part of 

true tree (Figure 4.15), which are Γ1 or Γ2 or Γ3 or Γ4. 

3. Otherwise is a “Failed” category. 
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Figure 4.15. Part of true tree 
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Table 4.2. Simulation result on investigating the capability in 

identifying data structures of 1000 repetitions 
Capability  

Censoring(%) Correct Part Fail 
0 918   76 6 
23 807 176 17 
47 588 353 59 
71 6 618 376 

 

Table 4.2 summaries the simulations which show that the 

proposed method performs well in identifying true data structures.  

For no censored competing risks data the method could correctly 

identify more than 90% of the true structure of data, less than 10% 

of the true data structure could partially identified and less than 

1% of them which failed to be identified.  The performance is 

slightly decreased when the percentage of censoring is increased 

up to 23% and it is about 50% of data structure which could be 

correctly identified when the percentage of censoring is 47%.  The 

performance gets worst for high censoring percentage; even though 

it is more than 50% of the true data structure could be partially 

identified.     

 

4.5 Summary 

 

This chapter proposes tree-structured regression for 

subdistribution of competing risks.  A splitting rule that select the 

best partition is based on Deviance statistic which showed good 
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performance in selecting the best cutpoint presented in previous 

chapter.  To apply this method we revisit the contraceptive 

discontinuation data and simple comparison is made with the 

result from Fine and Gray’s subdistribution model.  Since the trees 

method is aimed for stratifying individuals into groups, then the 

resulted groups is characterized by covariates which is significant 

in Fine and Gray’s model.  Hence, there is consistency on the 

result from both methods.   

 

Extensive Monte Carlo simulation suggests the method has good 

performance in identifying the structure of data.  The best 

performance is obtained for no censoring competing risks survival 

time data, even though the performance decreased as the 

increasing in the percentage of censoring.  The result is common 

encountered in the simulation study for survival data.   
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CHAPTER 5 
 
 

HYBRID MODEL FOR SUBDISTRIBUTION OF COMPETING 
RISKS 

 
 
 
In this chapter, we studied a hybrid model that combines 

subdistribution hazards regression (Fine and Gray, 1999) with 

tree-structured models for subdistribution of competing risks (see 

Chapter 4).  This hybridization will result in a new model having 

the merits inherited from both components.   

 

One primary motivation for this research stems from the interesting 

observation that subdistribution hazards regression and tree-based 

models tend to complement each other in many aspects: The 

subdistribution hazards regression model is meant to model the 

linear relationship between the complementary log-log 

transformation of subdistribution of competing risk survival time 

response and the predictors (see eq. (2.25)), while it is well-known 

that tree-based methods are not efficient to represent linearity; the 

tree method is excellent at handling categorical predictors while 

subdistribution hazards regression defines dummy variables and 

may result in messy model forms, especially when the number of 

categories is large; subdistribution hazards regression may fail to 

model nonlinearity while tree methods, via step functions, often 

provide satisfactory approximations; detecting interaction among 



 130 

covariates could be a daunting task in subdistribution hazards 

regression while a tree model does automatic interaction detection. 

On the other hand, both subdistribution hazards regression and 

tree methods give meaningful interpretations and are able to 

handle large high-dimensional data. It is rational, if 

subdistribution hazards regression and tree models are well 

combined, then the resulting model is able to improve model fit 

without a loss of interpretability. 

 

Our motivation was stimulated further by the question of how to 

combine subdistribution hazards regression with tree-structured 

models. In this chapter, we propose a hybrid model which 

augments the subdistribution hazards model with its corresponding 

tree-structured regression.  The main idea is to first fit the ‘best’ 

subdistribution hazards regression model and then use a tree 

structure as an augmentative tool to explain the remainder that 

has been left out by the first fit. The rest of this chapter is organized 

as follows; we propose a method fitting the hybrid model in section 

5.1.  Section 5.2 explains the use of hybrid model for competing 

risks by using the contraceptive discontinuation data as an 

illustration. 
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5.1 Hybrid Competing Risks Regression Model 

 

5.1.1 Model Structure 

 

Assume that there are J modes of failure, with potential failure 

time (X1i, X2i,…, XJi) for individual i.  Failure of the ith individual 

occurs at time *
iT  = min(X1i, X2i,…, XJi), and is due to cause *

iδ = j if 

JjXT jii ,...,1,* == .  We suppose that the follow-up of individual i is 

censored at time Ci, so that what is actually observed is the time to 

failure or last follow-up ( )iii CTT ,min *= , and the failure indicator δi, 

with δi = *
iδ  if ii CT ≤* , and δi = 0 otherwise.  We assume 

independence across individuals and that Ci is independent of *
iT .  

Besides that we also have covariates Zi = (Z1i, Z2i,…, Zpi,)∈ pℜ , may 

be a mixture of continuous and discrete variables.  Thus, observed 

data typically consists of n independent (Ti,δi,Zi).  Let the true 

model be  

 ( )( )[ ] ( ) ( )iijiij gttF ZZ +=−− *
0

~;1loglog λ  (5.1) 

and the best subdistribution hazard model be 

 ( )( )[ ] ( ) 0*
0

~;1loglog i
T
jijiij ttF ZZ βλ +=−−   (5.2) 

where 0
iZ ∈ qℜ , q < p, is a q-dimensional vector selected from Zi.  

Suppose that regression parameters are estimated by means of 

maximum likelihood method in which the log-likelihood function is 
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explog ZZ βββ δ  (5.3) 

The ‘best’ model is searched from some candidates with subset 

covariates ii ZZ ⊆0  based on Akaike information criterion (AIC) 

(Sakamoto et al., 1986): 

 ( ) qlAIC j 2ˆ2 +−= β  (5.4) 

Model with the smallest AIC is the ‘best’ model.  

 

However, model (5.2) may not give an adequate and satisfactory fit 

for a given data set. To possibly make improvements, we consider 

the following hybrid model 

 ( )( )[ ] ( ) ( )Γαβλ i
T
ji

T
jijiij ttF ZZZ ++=−− 0*

0
~;1loglog  (5.5) 

where the vector ( )Γ
iZ  comes from a tree-structured regression Γ.  

The tree structure Γ gives a piecewise constant approximation of 

( ) 0
i

T
jig ZZ β− , which is the difference between the true model  and 

the fitted subdistribution hazards model.  The advantages of this 

hybrid approach are: 

1. The subdistribution hazards model (5.2) captures global 

patterns, and the tree structure detects local properties left over  

out by model (5.2), such as nonlinear patterns and complex 

interactions. 
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2. The tree structure Γ not only provides useful diagnostic 

information about the subdistribution hazards model (5.2), but 

also reveals clues about how to make amendments. 

3. Model (5.5) enhances the subdistribution hazards model’s 

predictive accuracy. 

 

5.1.2 Algorithm of Hybridization 

 

To obtain the augmentation tree structure Γ, we start with the 

‘best’ subdistribution hazards model (5.2) and then adopt the back-

ward fitting idea of regression trees, which consists of three steps: 

(i) growing a large initial tree Γ0 by incorporating the linear 

model effect, (ii) pruning it back to a nested sequence of 

subtrees, and (iii) selecting the optimal tree size.  The detailed steps 

are given below. 

 

Growing a Large Tree 

 

To split the data, consider the following model: 

 ( )( )[ ] ( ) ( )γαβλ <++=−− kii
T
jijiij ZIttF 0*

0
~;1loglog ZZ  (5.6) 

The indicator function I(Zki < γ) corresponds to a binary split of 

the data according to a continuous predictor Zk.  If the predictor 
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is discrete with values in D = {d1,…, dr}, then any form of 

I(Zki ∈ A) with A⊂D  is considered. 

 

The best split s* is the one associated with the least deviance 

from fitting model (5.6) with the available predictors (see 

Subsection 3.2.2).  We then iteratively estimate the most 

significant change-point covariate effect with the smallest deviance 

to split the data, which yields a large initial tree Γ0.   

 

Pruning 

 

Given the large initial tree Γ0, a sequence of nested subtree is 

searched and the best subtree will be selected adopting Segal’s 

pruning algorithm (Segal, 1988).  The algorithm is as follows: 

- Initially grow a large tree Γ0. 

- To each of the internal nodes in the original tree, assign the 

maximal splitting statistics contained in the corresponding 

branch.  This statistic reflects strength of linking for the 

branch to the tree. 

- Among all these internal nodes, find the one with the smallest 

statistic.  That is, find the branch that has the weakest link 

and then prune off this branch from the tree. 

- The second pruned tree can be obtained in a similar manner 

by applying the above two steps to the first pruned tree. 
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- Repeating this process until the pruned tree contains only the 

root node, a sequence of nested trees is finally obtained.   

 

The best tree Γ  can be obtained by plotting the size of these trees 

against their weakest linking statistics.  Usually the tree 

corresponding to the “kink” point in the curve is chosen as the best 

one. 

  

For a given tree structure Γ in model (5.5), let Γ~  denotes the set of 

all terminal nodes in Γ and |·| represent cardinality.  Then, we 

define an n×|Γ~ | matrix ( )ΓZ  such that 

( )



 ∈

=
otherwise,0

 of node terminal th  nobservatio th if,1 ΓΓ hi
Zhi  

 

The ‘best’ model (5.2) is augmented by the ‘best’ tree Γ to form the 

hybrid model (5.5). 

 

5.2 Example: Contraceptive Discontinuation Data 

 

To illustrate, we revisit the contraceptive discontinuation data 

drawn from the database of the Indonesian Demography and 

Health Survey (IDHS) 2002.  The response variable is the time to 

discontinuation of using a particular contraceptive method, and the 

6 independent variables are listed in Table 5.1. 
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Table 5.1.  Variable descriptions for contraceptive 
discontinuation data 

 Var Name  Description  

  1.  soceco  household social and economic status (score 1-7) 
  2. age  age of start of contraceptive (years) 
  3.  resid  area of residence (0=rural,1=urban) 
  4.  relig  religion (0=Moslem, 1=non-Moslem) 
  5.  educ  woman’s education (0= primary or lower, 

1=secondary, 2=university) 
  6.  method  contraceptive methods (1=pills and injectables, 

2=IUDs and implants, 0= other modern methods 
(mainly condoms)) 

 

This contraceptive discontinuation data have been explored in 

Chapter 3 and 4.  Next, we apply the hybrid approach to get a 

better insight of these data.  Categorical variables with more than 

two categories should be converted to dummy variables first.  

Women’s education levels (educ) is converted to two dummy 

variables namely educ1 and educ2.  Variable contraceptive method 

(method) is also converted to two dummy variables, method1 and 

method2.  The dummy variables that we used are presented in 

Table 5.2. 

 

Table 5.2.  Dummy variables construction 
educ educ1 educ2  method method1 method2 

0 0 0  0 0 0 
1 1 0  1 1 0 
2 0 1  2 0 1 
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Type 1 risk: failure 

 

By means of AIC criterion, the best subdistribution hazards model 

for first risk of discontinuation (failure) contained age, educ2 and 

method2 predictor variables as presented in Table 5.3.  This model 

has the minimum AIC which was 1070.987. 

 

 
Table 5.3. The best subdistribution hazards regression for 

discontinuation due to failure 

 Variable  Coefficients  SE of Coefficients  P-value 

 age   -0.03658   0.01511   0.016 
 educ2    0.44630   0.25360   0.079 
  method2   -1.10400  0.51890   0.033 
      AIC = 1070.987 
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Figure 5.1. The large initial augmentation tree for 
discontinuation due to failure  
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Figure 5.2.   Nested subtrees of Segal’s pruning for the 

augmentation trees (first risk, discontinuation due 
to failure)  

 

Given that the best AIC model contained three predictor variables 

(age, educ2 and method2), it is interesting to use the hybrid 

method to boost it.  To proceed, we constructed the augmentation 

tree.  The initial tree and sequence of nested subtrees for pruning 

are presented in Figure 5.1 and Figure 5.2, respectively. The final 

augmentation tree as shown in Figure 5.3 has three terminal 

nodes.  The first split was according to soceco < 2.  For those 

women with soceco ≥ 2, their discontinuation time further differed 

by soceco < 4.  This indicates that the effect of this predictor on 

discontinuation time has not been represented by the best AIC 

model (Table 5.3).  Here, we augmented the best AIC subdistribution 

hazards regression model with a tree structure resulted in a hybrid 

model, which provided a feasible way of exploiting the merits of 
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both methods.  The fitted hybrid model is displayed in Table 5.4. 

To compare with the best AIC model, we performed likelihood ratio 

test.  The resulted p-value was 0.1718812 which indicated that 

hybrid model did not constitute a substantial improvement over 

best AIC model.   

1

Soceco  2 ?
1062.94

noyes
n=2631

n=782 n=1849

n=1038

3

noyes
Soceco  4?

656.38
76

2

 
Figure 5.3. The final augmentation tree for discontinuation 

due to failure  
 
Table 5.4 The hybrid regression for discontinuation due to 

failure 

 Variable  Coefficients  SE of Coefficients  P-value 

 age   -0.03543   0.01498   0.018 
 educ2    0.49770   0.25360   0.050 
  method2   -1.14400  0.51690   0.027 
 node6 -0.54210 0.30360 0.074 
 node7 -0.17020 0.28280 0.550 
      AIC = 1071.465 

 
 

Type 2 risk: abandonment 

 

For second risk (abandonment), the minimum AIC, 13817.70, was 

attained by subdistribution hazards model which contained 

covariates age, educ1, educ2 and method1 (see Table 5.5).  All of 

the covariates were significant at 5% level.  The initial 

augmentation tree had five terminal nodes (see Figure 5.4).  The 
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Segal’s pruning algorithm revealed that the weakest branch was 

node 2 (kink location), which resulted in final augmentation trees 

of size 2 (see Figure 5.5).  The splitter was soceco at cutpoint 3 

(see Figure 5.6).  Hence the hybrid model contained five covariates.  

The additional covariate for the final model was node3, dummy 

variable for soceco ≥ 3.  Even though this additional dummy 

variable and likelihood ratio test were not significant at α = 5%, but 

its AIC statistic was slightly smaller, 13816.76, compared to the 

initial model (see Table 5.6).   

  

Table 5.5. The best subdistribution hazards regression for 
discontinuation due to abandonment 

 Variable  Coefficients  SE of Coefficients  p-value 

 age    0.01709 0.004863 0.00044 
 educ1   -0.17970 0.080320   0.02500 
 educ2 -0.32750 0.098430 0.00088 
  method1    0.20060  0.082440   0.01500 
      AIC = 13817.70 
 

 
Figure 5.4. The large initial augmentation tree for 

discontinuation due to abandonment 
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Figure 5.5. Nested subtrees of Segal’s pruning for the 

augmentation trees (second risk, discontinuation 
due to abandonment)  

 

 

 

Figure 5.6. The final augmentation tree for discontinuation 
due to abandonment 

 
 
 
Table 5.6. The hybrid regression for discontinuation due to 

abandonment 

 Variable  Coefficients  SE of Coefficients  p-value 

 age    0.01529 0.005027 0.00240 
 educ1   -0.21150 0.082560   0.01000 
 educ2 -0.40070 0.105900 0.00015 
  method1    0.20020  0.082530   0.01500 
 node3  0.12330 0.069560 0.07600 
      AIC = 13816.76 
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Type 3 risk: switching 

 

Subdistribution hazards model for risk to switching with covariates 

soceco, educ1, educ2, method1 and method2 had minimum AIC, 

14056.20.  All covariates were significant at α = 5% with the least 

p-value for covariate educ2, university-educated level (see Table 

5.7). 

 
Table 5.7. The best subdistribution hazards regression for 

discontinuation due to switching 

 Variable  Coefficients  SE of Coefficients  P-value 

 soceco   -0.04172 0.02022 0.03900 
 educ1    0.23090 0.09241   0.01200 
 educ2  0.53350 0.11320 0.00000 
  method1   -0.63930  0.20060   0.00140 
 method2 -0.75120 0.20710 0.00029 
      AIC = 14056.20 

 

The initial large augmentation tree had eleven terminal nodes (see 

Figure 5.7).  Almost all of the splitting was based on covariate age.  

It seemed that age was an important covariate associated with time 

to switching, although it was not present in the best AIC 

subdistribution model. 

 

Segal’s pruning algorithm yielded a final augmentation tree of size 

2.  Kink  location  at  node 2 leads to additional dummy covariate 

node 3 (age ≥ 38).  These are presented in Figure 5.8 and 5.9.     
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Figure 5.7. The large initial augmentation tree for 
discontinuation due to switching 
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Figure 5.8. Nested subtrees of Segal’s pruning for the 

augmentation trees (third risk = switching) 
 

 

Figure 5.9. The final augmentation tree for discontinuation 
due to switching 

 

The final hybrid subdistribution hazard model had smaller AIC 

than the initial one.  In addition, its p-value of likelihood ratio test 

was also significant (p-value = 9.202903×10-6), even though 

covariate soceco was not significant (see Table 5.8). 

 

Table 5.8. The hybrid regression for discontinuation due to 
switching 

 Variable  Coefficients  SE of Coefficients  p-value 

 soceco   -0.03142 0.02023 0.12000 
 educ1    0.17560 0.09286   0.05900 
 educ2  0.45420 0.11400 0.00007 
  method1   -0.67340  0.20410   0.00097 
 method2 -0.76150 0.21030 0.00029 
 node3 -0.51770 0.12390 0.00003 
      AIC = 14038.53 
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5.3 Summary 

 

In this chapter we proposed a new methodology to analyze 

competing risks survival data, which in particular combined the 

merits of Fine and Gray’s proportional hazards model for 

subdistribution of competing risks and our developed regression 

trees for competing risks.  Although semiparametric model of Fine 

and Gray’s has been extensively studied, to our knowledge no 

extension which combined it with regression trees methodology.   

We first searched the best AIC model of Fine and Gray’s model and 

then augment it with tree.  The augmentation was aimed to boost 

the best AIC model by adding the terms which represented the left 

over parts of the best AIC model. 

  

Application of the proposed method to the contraceptive 

discontinuation data showed that the hybrid models had the lower 

AIC compared to best AIC model of Fine and Gray’s.  It showed that 

the proposed method is better than the current one. 
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CHAPTER 6 
 
 

PARAMETRIC REGRESSION FOR SUBDISTRIBUTION OF 
COMPETING RISKS BASED ON NON-MIXTURE CURE MODEL 

 
 
 
The competing risks data consist of the failure time (T) and the 

cause of failure (δ). Modelling latent survival time and joint 

distribution of (T, δ) are two approaches which generally used 

for addressing competing risks data. The first approach 

assumes independency among latent survival time.  However, 

statistical analysis for independent competing risks data 

under various parametric models has been considered (David 

and Moeschberger, 1978). The techniques used for analysing 

right censored data can be implemented if the approach (i) is 

used and standard parametric, semiparametric or 

nonparametric models can be used without any complications. 

Even when latent failures are not independent multivariate 

parametric forms can be assumed and statistical analysis can 

be done (Moeschberger, 1974). By using second approach, 

cause specific hazard rate is used to model the competing 

risks data (Kalbfleisch and Prentice, 1980). Nonparametric 

techniques for estimating and testing cause-specific hazards 

have been developed. There has been some discussion about 

the use of Cox's proportional hazards model, which is a 

semiparametric model, for the cause-specific hazards (Crowder, 



 147 

2001).  However, there has been very little done in specifying 

parametric models for the cause-specific hazards or for the 

subdistribution functions.   

 

To our knowledge only Jeong and Fine (2006) which model 

subdistribution parametrically.  Recently parametric 

subdistribution model had been extended to account for 

covariate in regression setting (Jeong and Fine 2007).  A 

difficulty in specifying a parametric subdistribution survival 

distribution is because it is an improper distribution function. 

One way to overcome this difficulty is to specify a parametric 

model for the subdistribution function which could in practice 

take any form of the improper distribution function.  To do so, 

Jeong and Fine (2006, 2007) utilize Gompertz distribution, which 

can take the form of improper distribution, for modeling parametric 

subdistribution function.  Unfortunately, this approach could not 

be used for developing subdistribution function 

systematically.  It means that we can not use various other 

well known distribution functions which commonly used in 

the survival analysis, e.g. exponential, Weibull, gamma and 

generalized gamma.  Standard methods can be employed for 

fitting parametric subdistribution functions. Analytical 

methods like maximum likelihood estimation can be used to 

estimate the unknown parameters.  
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To address this issue, we model the subdistribution function for 

each cause of failure directly.  By considering the cure fraction 

parameter in the non-mixture cure model of Yakovlev and Tsodikov 

(1996) as the proportion of individuals who don't experience the 

event of interest in the competing risks setting, we could develop 

subdistribution model based on non-mixture cure model.  Beside 

that, non-mixture cure model which contained kernel distribution 

make it is possible to develop subdistribution model based on 

various well known kernel distributions. 

 

Our proposed parametric model for subdistribution of competing 

risks might take the form of improper subdistribution function.  

Improper means the asymptotic value of the function cannot reach 

value 1 following the usual property of distribution function. 

 

The non-mixture cure model and its relationship with the proposed 

direct modelling of subdistribution are presented in Section 6.1.  In 

Section 6.2, we developed maximum likelihood estimation for the 

proposed model.  In Section 6.3, simulation study was performed 

to evaluate the efficiency of the parameter estimates.    The data 

analysis example is in Section 6.4.  We also proposed new 

subdistribution model which had the property like Gompertz 

distribution and called it Gompertz-like subdistribution in Section 

6.5.  Finally, Section 6.6 is the conclusion of the chapter. 
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6.1. Parametric Subdistribution 

 

6.1.1 Univariate Model 

 

The development of subdistribution model is carried out by 

considering non-mixture cure model.  Non-mixture cure model had 

been proposed by Yakovlev and Tsodikov (1996), Tsodikov (1998) 

and Chen et al. (1999) where it assumed bounded cumulative 

hazard H(t) as t → ∞, 

                                           H(t) ≤ θ*, ( ) *lim θ=
∞→

tH
t

  

One way to enforce the above property is to write H(t) = θ*F*(t), 

where F*(t) is the distribution function of a nonnegative random 

variable, called kernel distribution.  Then the survival distribution 

is ( ) ( )tFetS
**θ−=  and the distribution function can be written as 

 ( ) ( )[ ] 0  ,exp1 *)(*
*

>−−= θθ
tFtF  (6.1) 

In this model, the distribution function converges to 1–π, where 

( )*exp θπ −= , overtime; hence, this is not a proper distribution. The 

parameter π is interpreted to be the cure fraction.  In the 

competing risks framework, we utilized cure fraction to model the 

proportion of individuals who don't experience the event of interest. 
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For this purpose, the subdistribution function for cause j can be 

formulated by 

 ( ) ( )[ ] )(*
*

exp1
tF

jj
jtF θ−−=  (6.2) 

where ( ) ( ) ( )** exp1lim jjt
tFjP θδ −−===

∞→
 which is the probability of 

failure due to cause j.  In the other hand, ( ) ( )** exp jjP θδ −=≠  

which is the proportion of individuals who don't experience the jth 

cause and ( ) ( )tFtFJ

j j =∑ =1
.  Chen et al. (1999) gave a Bayesian 

discussion on model (3) and Sposto (2002) applied it to pediatric 

cancer data. 

 

Exponential kernel 

 

Let us assumed F*(t) be an exponential distribution with parameter 

κ.  Then the resulted subdistribution is 

 ( ) ( )[ ] )exp(1  ** exp1,; t
jjjj

jtF κ
θκθ

−−
−−=  (6.3) 

It is clear that subdistribution (6.3) is improper when κj > 0 and 

∞<< *0 jθ .  This model encompasses Gompertz subdistribution 

which was previously proposed by Jeong and Fine (2006). 
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Weibull kernel 

 

Suppose that Weibull kernel distribution is used in the 

construction of subdistribution of competing risks. The 

corresponding subdistribution model is formulated by 

 ( ) ( )[ ] )exp(1  ** exp1,,;
j

jt
jjjjj tF

α
κ

θακθ
−−

−−=  (6.4) 

where ∞<< *0 jθ , κj>0 and αj>0. Note that this distribution 

includes mixture model which was proposed by Larson and Dinse 

(1985) and Maller and Zhou (1996, 2002). 

 

We can also use another kernel distribution such as Gompertz, 

gamma and generalized gamma.  Table 6.1. showed the resulted 

subdistribution based on those three kernel distributions. 

Table 6.1. Kernel distribution and the resulted 
subdistribution for three distributions 

Distribution Kernel distribution Subdistribution 

Gompertz ( )[ ]{ }jjj t ρρτ /exp1exp1 −−  ( )[ ] ( )[ ]{ }jjj t
j

ρρτ
θ

/exp1exp1*exp1
−−

−−  
Gamma I(κjt,γj)* ( )[ ] ( )jj tI

j
γκ

θ
,  *exp1 −−  

Generalized 
gamma 

( )jj
jtI γκ α ,  ( )[ ] ( )j

j
j tI

j
γκ

α

θ
,  *exp1 −−  

* ( ) ( ) ∫ −−=
t

udueutI
0

11, γ
γΓγ  and ( ) ∫

∞
−−=

0

1 dueu uγγΓ  
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6.1.2 Regression Model 

 

Frequently, however, the model can be improved by including 

relevant explanatory variables ( )TKZZ ,...,1=Z  also known as 

covariates.  When covariates are included in the model, the 

primary question of interest concerns the relationship between the 

time at which the subject fails from any cause T and the 

explanatory variable Z.  For instance, this is the case when 

treatments need to be compared or when risk factors are identified 

for a particular disease.   This covariate can be incorporated into 

cure fraction parameter as follows 

 ( ) [ ]{ } ( )tF
jjj

jtF
*

)'exp(exp1 βzθ−−=  (6.5) 

where βj is K×1 parameter vector and z is a time independent K×1 

covariate vector without constant. 

 

For direct regression modelling of the subdistribution function, we 

could also use some well known distribution as kernel, such as 

exponential, Weibull, Gompertz, gamma and generalized gamma.  

For example, if kernel distribution is Weibull then (6.5) became 

 ( ) [ ]{ } )exp(1)'exp(exp1,,,,;
j

jt
jjjjjjj tF

α
κθακθ −−−−= ββ zz  (6.6) 
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Reparameterized version of (6.6) is parametric regression of 

proportional hazard of subdistribution proposed by Jeong and Fine 

(2007). 

The complementary log-log transformation of (6.5) is 

 ( ) jjjj tFtF β']log[)}](1log{log[ * z+=−− θ  (6.7) 

This is the parametric version of proportional subdistribution 

hazard regression proposed by Fine and Gray (1999) where )(* tF j  is 

fully specified by kernel distribution. 

 

6.2. Maximum Likelihood Estimation 

 

Suppose that competing risks data consist of observations t1,…,tn 

on the lifetimes of n individuals and δ1,…,δn as censor indicators, 

where 

 




=
censored, is  individual if,0
uncensored is  individual if,1

i
i

iδ  (6.8) 

 

and, if δi=1, i.e. individual i dies, we also observe the cause of death 

which takes values in {1,…,J}. Thus we can define, and observe, 

the indicators 

 




=
otherwise,0

 cause of dies  individual if,1 ji
jiδ  (6.9) 
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for 1≤i≤n, 1≤j≤J. 

 

Inference for the subdistribution function is through the likelihood 

function 

 [ ]∏ ∏
=

−

=








=

n

i
i

J

j
ij

iji tStfL
1

1

1

)()}({)( δδψ , (6.10) 

where S(t) is overall survival function, ∑ =
−=

J

j j tFtS
1

)(1)( , and  

dttdFtf jj /)()( =  is an improper probability subdensity function for 

the jth cause-specific event. Formulating the likelihood in terms of 

the direct subdistribution function differs from the traditional 

formulation via the cause-specific hazard function in Prentice et al. 

(1978). Since the likelihood function (6.10) cannot be factored into 

a product of J cause-specific functions, then all parameters should 

be estimated simultaneously.  

 

From (6.10), the log-likelihood function is given by 

 { }∑ ∑∑
= == 











−−+







=

n

i

J

j
iji

J

j
ijji tFtfl

1 11

})(1log{)1()(log)( δδψ  (6.11) 

We presented the likelihood function for kernel distribution of 

exponential, Weibull, Gompertz, gamma and generalized gamma in 

appendix D. 

 

We assume a parameterization for subdistribution Fj of the form  
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 ( ) ( )jj tFtF ψ,=  (6.12) 

Here ψj is a (1+q+K)-vector of parameters, ψj = (θj,φ j1,…,φjq,β j1,…,βjK) 

where θj represents parameter for cure fraction,(φ j1,…, φjq) for 

kernel distribution and (β j1,…, βjK) for covariates, for each cause of 

failure j=1,…,J. Set all parameters into a p×1 vector: ψ = (ψ1,…, ψJ), 

where p = (1+q+K)J.  Let u(ψ) be the p×1 score vector which 

contains the first derivative of l(ψ) with respect to ψ-parameters.  

Also, let the p×p matrix I(ψ) be the observed information matrix 

which contains negative second derivatives of l(ψ), so that 

 ( ) ( )
'

2

ψψ
ψ

ψ
∂∂

∂
−=

lI  (6.13) 

Setting the resulting score function equal to 0, the maximum 

likelihood estimator (MLE) ψ̂  can be obtained by means of an 

iterative procedure such as Newton-Raphson.  When the iterative 

procedure has converged, the variance covariance matrix of the 

parameter estimates can be approximated by the inverse of 

information matrix, evaluated at ψ̂ , that is, ( )ψ̂1−I .  

 

The asymptotic normality of the MLE is used for testing the 

hypothesis ψ = ψ0. For large samples ψ̂  has a p-variate normal 

distribution with mean ψ and variance-covariance estimated 

consistently by ( )ψ̂1−I .  The test statistic is 



 156 

 





 −














 −= 0

^^

0

^
2 ψψψψψχ I

'

W  (6.14) 

which has a limiting chi-squared distribution with p degrees of 

freedom when ψ = ψ0. 

 

Wald test can also be used to test hypothesis about subset of ψ.  

Let ( )'',' 21 ψψψ = , where ψ1 is a p1×1 vector of the ψ’s of interest and 

ψ2 is the vector of the remaining p2 = p – p1 ψ’s.  We wish to test the 

hypothesis that ψ1 = ψ10. To construct the Wald test we partition 

the information matrix as 

 







=

2221

1211

II
II

I  (6.15) 

where I11(I22) is the p1×p1(p2×p2) sub matrix of negative second 

partial derivatives of the log-likelihood with respect to ψ1(ψ2) and I12 

and I21 the matrices of mixed second partial derivatives.  The Wald 

test is  

 ( ) ( )( ) ( )101
111

101
2 ˆˆ'ˆ ψψψψψχ −−=

−IW   (6.16) 

where ( )ψ̂11I  is the upper p1×p1 submatrix of ( )ψ̂1−I . 

 

For one-parameter case, the more commonly used form is 

( ))(,~ˆ 1
jkjkjk ψψψ −IN .  The 100(1–α)% approximate confidence 

interval for the unknown ψjk-parameters is the interval with limits 
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( )jkjk SEz ψψ α ˆˆ /2± , where zα/2 is the upper α/2 point of the standard 

normal distribution.   

 

6.3 Simulation 

 

Monte Carlo simulations were carried out to investigate the 

performance of the maximum likelihood estimates of model 

parameters.  The following subdistribution models were used to 

generate data 

 ( ) [ ]{ } ( ) JjtF jj tF
jjjj ,...,1,)'exp(exp1; ;*

=−−= φβθψ z  

Let ( ) ( ) [ ])'exp(exp1;lim|1 jjjjtj tFP βθψδ zz −−===
∞→

 is the 

probability to failure due to cause j and P(δ* = 0|z) is the immune 

fraction.  Because we have constraint 

( ) ( ) 1|0|1 *

1

==+=∑
=

zz δδ PP
J

j
j , then the subdistribution of J-th 

cause is derived based on the first J–1 subdistributions, where  

( ) ( ) ( )∑
−

=

=−=−==
1

1

* 1|011
J

j
jJ PPP δδδ z .  Hence the Jth 

subdistribution can be expressed as follows 

( )( ) ( )
);(

1

1

**
1111

*

})]'exp(exp[   

|0)1{(1,|0,,,...,,;

JJ tF
J

j
jj

JJJJ PJPtF

φθ

δφδθθ

∑
−

=

−−

−−

=+−−==

βz

zzββ
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For example, if we use one covariate, two causes of failure, J=2, no 

immune fraction, P(δ* = 0|z)=0 and Weibull kernel, then the first 

subdistribution is  

( ) [ ]{ } )exp(1
1111111

1
1)exp(exp1,,,,;

ακβθακβθ tztF −−−−=z  

and the second is 

[ ]{ } )exp(1
1122112

2
2)exp(exp11),,,,;(

ακβθακβθ tztF −−−−−=z  

This formulation involves six parameters ),,,,,( 221111 καβκαθ=ψ .  

 

Sample of size 200 is generated by the following steps.  First, select 

the cause of failure from set {1,2} randomly and then generate 

failure time from its conditional distribution given the failure 

cause. Independent uniform censoring over interval (0,b0) and 

(0,b1), for z=0 and z=1 respectively, was used with the endpoints of 

these intervals chosen to give censoring percentage (CP) 25% and 

50%.  Let the true values of parameter θ1=α1=κ1=β1=1, and κ2=α2=2. 

For dichotomous covariate z, the true subdistribution is given in 

Figure 6.1.  
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Figure 6.1. The true subdistribution function for 1st cause (left) 

and 2nd cause (right), z=0 (dashed) and z=1 (solid). 
 

 

One thousand samples were generated, and the following 

computations were carried out from the simulation study to asses 

the estimates. 

i. Mean, ∑
=

=
1000

1

ˆ
1000

1ˆ
i

iψψ  

ii. Estimated bias = ψψ −ˆ  

iii. Absolute relative estimated bias (%) = %100|bias Est.|
×








ψ

 

iv. Estimated standard errors = ∑
=

−
−

1000

1

2)ˆˆ(
11000

1
i

i ψψ  

v. Estimated root mean square errors (RMSE) = ∑
=

−
1000

1

2)ˆ(
1000

1
i

i ψψ  

The results of maximum likelihood estimates for ψ̂  are shown in 

Table 6.2. 
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Table 6.2. Simulation result on the efficiency of the parameter 
estimates 

CP Parameter 
True 

Parameter Mean Est. Bias 
ARE 

Bias(%) Est. SE Est. RMSE 
0% θ1 1 1.010878 0.010878 1.087814 0.0225 0.1503686 

 α1 1 1.016035 0.016035 1.603524 0.0057 0.0769869 
 κ1 1 1.011416 0.011416 1.141581 0.0193 0.1392948 
 β1 1 1.018148 0.018148 1.814797 0.0462 0.2155957 
 α2 2 2.096106 0.096106 4.805285 0.0898 0.3146344 
 κ2 2 2.097115 0.097115 4.855728 0.2149 0.4733885 

25% θ1 1 1.024535 0.024535 2.453483 0.0296 0.1738442 
 α1 1 1.018544 0.018544 1.854417 0.0082 0.0921788 
 κ1 1 1.013122 0.013122 1.312164 0.0321 0.1795273 
 β1 1 1.012004 0.012004 1.200418 0.0533 0.2311902 
 α2 2 2.105945 0.105945 5.297244 0.1329 0.3794285 
 κ2 2 2.220640 0.220640 11.032021 0.5263 0.7579164 

50% θ1 1 1.000385 0.000385 0.038541 0.0851 0.2915301 
 α1 1 1.032530 0.032530 3.252967 0.0166 0.1329781 
 κ1 1 1.220879 0.220879 22.087940 0.4326 0.6935007 
 β1 1 1.021363 0.021363 2.136338 0.0695 0.2644442 
 α2 2 2.214819 0.214819 10.740980 0.3411 0.6219948 
 κ2 2 3.169036 1.169036 58.451785 18.4589 4.4505180 

 

It appears from Table 6.2 that the estimates obtained by the 

maximum likelihood method are quite close to the true parameter 

values, in the sense that they have rather small biases.  For 

instance, for no censoring (CP=0%) the absolute relative estimated 

bias for all estimated parameters was less than 5%.  All biases 

were positive and less than 10%.  The estimated standard errors 

were also small, ranging from 0.0057 to 0.2149.  The estimated 

root mean square (RMSE) was also found to be small indicating 

that the maximum likelihood method has a good performance.  

However, all were increased as CP increased.   Overall, the MLE 

performed very well for the parameter. 
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6.4 Application to Bone Marrow Transplant (BMT) Data 

 

BMT is a standard treatment for acute leukemia.  Recovery 

following bone marrow transplantation is a complex process.  

Transplantation can be considered a failure when patient’s 

leukemia returns (relapse) or when he or she dies while in 

remission (treatment related death) (Klein and Moeschberger, 

2003).  There are three types of leukemia patients, namely acute 

lymphoblastic leukemia (ALL), acute myeloctic leukemia low-risk 

first remission (AML-low), and AML high-risk second remission or 

untreated first relapse (AML-high).  We examined the probabilities 

for relapse and for death in remission by using univariate model 

for each type of leukemia patients (ALL, AML-low and AML-high) 

and regression model with two indicator variables, z1 and z2, where 

z1=1 for AML-low group, z1=0 otherwise and z2=1 for AML-high 

group, z2=0 otherwise. 

 

6.4.1 Univariate Models for Leukemia Patients 

 

We considered subdistribution model (6.2) with five kernel 

distributions, ( )tF j
* , as previously discussed in subsection 6.1.1, 

namely exponential, Weibull, Gompertz, gamma and generalized 

gamma.  
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Exponential 

 

The subdistribution model with Exponential kernel is given in (6.3), 

where j = 1,2 whereby   

 




=
death to due failure for,2
relapse to due failure for,1

j  (6.17) 

The model is fitted to the three groups of patient in the BMT data.  

The resulted estimated model for patient group ALL, AML-low  and  

AML-high   gave   the   log-likelihood  =  –197.307,  –229.571  and 

–261.082 or AIC = 402.614, 467.142 and 530.164, respectively.  All 

estimated subdistribution curves along with their nonparametric 

estimates are presented in Figure 6.2.   It’s clear that AML-high 

patients has the highest incidence of relapse, followed by ALL and 

AML-low patients.  However, we cannot distinguish the incidence of 

death for the three groups of patient.  

 
Figure 6.2 The estimated subdistribution curve with 

Exponential kernel for relapse (left) and death 
(right). 
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Weibull 

 

The fitting of subdistribution model with Weibull kernel (6.4) to the 

three groups of patient (ALL, AML-low and AML-high) resulted in 

estimated    models    with    log-likelihood  =  –196.175, –224.568 

and –259.886 or AIC = 404.35, 461.136 and 531.772, respectively.  

Even though all the log-likelihood values were greater than log-

likelihood of exponential kernel, but not all of their AICs were less 

than AIC of Exponential kernel.  Only AML-low group has smaller 

AIC.  The other two groups have greater AIC, which means that 

Weibull kernel are less suitable for ALL and AML-high groups.  The 

estimated subdistribution curves are presented in Figure 6.3.  

Again we cannot distinguish the incidence of death for the three 

groups of patient. 

 

Figure 6.3. The estimated subdistribution curve with Weibull 
kernel for relapse (left) and death (right). 
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Gompertz 

 

Figure 6.4 shows the estimated subdistribution curves resulted 

from fitting Gompertz kernel to the three groups of patient in BMT 

data.   The  log-likelihood  values   were   –195.444,   –226.031  

and –260.294 or AIC = 402.888, 464.062 and 532.588 for ALL, 

AML-low and AML-high patients, respectively.   In terms of AIC, all 

the three groups are less suitable modelled by Gompertz kernel 

compared to Exponential (ALL and AML-high patient groups) and 

Weibull kernel (AML-low patient group). 

 
Figure 6.4. The estimated subdistribution curve with 

Gompertz kernel for relapse (left) and death (right). 
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AIC statistics in Table 6.3 as well as their estimated curves in 

Figure 6.5 (Gamma kernel) and Figure 6.6 (Generalized Gamma 

kernel).  

 

Table 6.3. Summary of the fitting results 
Log-lik AIC  

ALL AML-l AML-h ALL AML-l AML-h 
Exponen –197.307 –229.571 –261.082 402.614 467.142 530.164 
Weibull –196.175 –224.568 –259.886 404.350 461.136 531.772 
Gompertz –195.444 –226.031 –260.294 402.888 464.062 532.588 
Gamma –196.919 –1194.543 –298.905 405.838 2401.086 609.810 
GGamma –196.014 –817.031 –259.582 408.028 1650.062 535.164 
 
 
 
 
 

 
Figure 6.5. The estimated subdistribution curve with Gamma 

kernel for relapse (left) and death (right). 
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Figure 6.6 The estimated subdistribution curve with 

Generalized Gamma kernel for relapse (left) and 
death (right). 

 

6.4.2 Regression Models for Leukemia Patients 

 

We considered the model 

( ) [ ]{ } ( ) 2,1,)exp(exp1,,; ;
221121

*

=+−−= jzztF jj tF
jjjjjjjj

φββθφββθ ,  

with the kernel ( )jj tF φ;*  to be exponential, Weibull, Gompertz, 

gamma and generalized gamma. 

 

The proposed models are fitted to BMT data.  The SAS® NLP 

procedure with trust region optimization method was used as 

nonlinear optimization subroutine to address the maximum 

likelihood estimation (SAS, 2004).  The result is presented in Table
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  Table 6.4. Parameter estimates (standard errors) for the BMT data 

Cause Kernel Kernel parameter estimates θ̂  1β̂  2β̂  AIC 
c.o.f 1 Exponential κ̂ =0.003(0.001)   0.397(0.115) -0.798(0.440) 0.463(0.362) 1401.293 
Relapse Weibull κ̂ =0.0003(0.0003) α̂ =1.393(0.167)  0.402(0.116) -0.820(0.440) 0.478(0.362) 1396.797* 
 Gompertz ρ̂ =0.002(0.001) τ̂ =0.002(0.000)  0.401(0.116) -0.816(0.440) 0.473(0.362) 1398.482 
 Gamma κ̂ =0.001(0.0000003) γ̂ =0.255(0.038)  0.209(0.032) -0.797(0.001) 0.522(0.002) 1573.079 

 Gen. Gamma κ̂ =0.084(0.005) γ̂ =0.203(0.031) α̂ =0.251(.) 0.185(0.034) -0.804(0.596) 0.511(0.381) 1744.596 

c.o.f 2 Exponential κ̂ =0.002(0.000)   0.409(0.119) -0.126(0.381) -0.122(0.400)  
Death Weibull κ̂ =0.007(0.005) α̂ =0.819(0.120)  0.416(0.124) -0.117(0.382) -0.147(0.402)  
 Gompertz ρ̂ =-0.001(0.001) τ̂ =0.003(0.001)  0.435(0.148) -0.114(0.382) -0.136(0.402)  
 Gamma κ̂ =0.004(0.00004) γ̂ =0.253(0.040)  0.209(0.032) -0.105(0.001) -0.082(0.001)  

 Gen. Gamma κ̂ =0.016(0.000) γ̂ =0.196(0.030) α̂ =0.402(.) 0.186(0.033) -0.105(0.437) -0.083(0.549)  

   c.o.f: cause of failure 
   *the minimum AIC 
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6.4.  Standard error of the maximum likelihood estimates was 

obtained by Normal asymptotic approach, whereas the variance-

covariance matrix was an inverse of Hessian matrix.  However, the 

parameters estimate for generalized gamma kernel distribution are 

unrealistic.  Two of the parameter estimates of generalized gamma 

were not available for the standard error, and it also gives a 

warning: Optimization cannot be completed.  The same problem was 

reported in Koti (2004). 

 

Weibull kernel shows the minimum AIC statistic, 1396.796.  Figure 

6.7 shows comparative plot of the nonparametric subdistribution 

using Satagopan (2004) method and parametric subdistribution 

using Weibull kernel estimates for three groups of leukemia 

patients.  Parametric curves agree reasonably well with 

nonparametric, although there is some evidence of lack of fit in the 

first few days for relapse particularly for AML-low group.  P-value 

for effect of dummy variable AML-low to probability of time to 

relapse was 0.064. The negative sign of 11β̂  indicated that the 

relapse subdistribution for AML-low group was lower than the 

others.  There was no difference in the subdistribution death of the 

three groups.  
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Figure 6.7. Estimated subdistribution functions for relapse 
(left) and death (right) using nonparametric 
(dashed) and parametric with Weibull kernel (solid). 

 

 

6.5. Parametric Gompertz-like Subdistribution 

 

Sometimes the event of interest occurred at a fairly steady rate over 

the entire time period of study.  This makes the subdistribution 

function seems to behave like proper distribution with asymptote 

at 1.  Thus, the improper subdistribution might not be suitable for 

modelling such kind of phenomena.  Figure 6.8 shows the 

illustration of the cause of interest which occurred at a fairly 

steady rate over the first 50 days.  Suppose that the period of study 

is less than 30 days, then most of the competing cause occurred 

during the first 10 days and then plateau off even though a few 

events were still occurring towards the end of the follow-up period.  

However, the cause of interest has not plateau off up to 30 days of 
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follow-up period.  We can use proper subdistribution model for 

cause of interest and improper subdistribution for competing cause 

for modelling these phenomena.   
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Figure 6.8. Illustration of proper subdistribution for cause of 
interest (left) and improper subdistribution for 
competing cause (right). 

 

6.5.1. Univariate Gompertz-like Subdistribution Model 

 

Let us revisit Gompertz distribution, 

 ( ) ( )[ ]{ }ρρτ /exp1exp1 ttF −−=  (6.18) 

One of the nice properties of Gompertz distribution is the 

asymptote of the cumulative distribution function which may be 

less than 1.  If ρ ≥ 0, then asymptote for large t of equation (6.18) is 

1 which shows that it is a proper distribution.  Whereas, an 

improper case of equation (6.18) occurs when  ρ < 0.  Next, we will 
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develop some subdistribution functions which may be proper or 

improper depend on the sign of parameter.  Such kind of 

subdistribution will be called as Gompertz-like subdistribution.  

 

Gompertz-like subdistribution with exponential kernel 

 

Given a subdistribution for jth cause with exponential kernel as 

expressed in (6.3), and after reparameterization of 

 
j

j
j ρ

τ
θ −=*   and jj ρκ −= , 

the resulted subdistribution is  

 ( ) ( )[ ]{ }jjjjjj ttF ρρτρτ /exp1exp1,; −−=  (6.19) 

It is clear that (6.19) is the usual Gompertz subdistribution which 

will be proper when ρ ≥ 0 and improper when ρ < 0 with the 

plateau equals to ( )
j

j
ρ

τexp1 − .   

 

Gompertz-like subdistribution with Weibull kernel 

 

Reparameterization for subdistribution with Weibull kernel (6.4) is 

carried out in the same manner with 

 
j

j
j ρ

τ
θ −=*   and jj ρκ −=  

Thus, the resulted Gompertz-like subdistribution is 
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 ( ) ( )[ ]{ }jjjjjjj
jttF ρρταρτ α /exp1exp1,,; −−=  (6.20) 

Again, its property depends on the sign of ρj.  For improper case, 

its plateau is also equals to ( )
j

j
ρ

τexp1 − . 

 

Gompertz-like subdistribution with Gompertz kernel 

 

Let us consider the other kind of Gompertz distribution, 

 ( ) ( )[ ]tetF κθ −−−−= 1exp1  (6.21) 

by developing the subdistribution function based on non-mixture 

model with Gompertz kernel (6.21), we have 

 ( ) ( )[ ] ( )[ ]tj
j e

jjjjj tF
κ

θ
θκθθ

−
−−−

−−=
1exp1  ** exp1,,;   (6.22) 

The reparameterization of (6.22) with  

 
j

j
j ρ

τ
θ −=*   and jj ρκ −=  

gives 

 ( ) ( )( )[ ]{ }j
t

jjjjjj
jetF ρθτθρτ ρ /1exp1exp1,,; −−−−=  (6.23) 

Thus, (6.23) has the form of Gompertz-like subdistribution which 

may be proper or improper depends on the sign of ρ.  For ρ < 0, the 

asymptote of (6.23) will be equal to ( )[ ]jj
je ρτ θ /1exp1 −−− .   
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6.5.2. Parametric Regression with Gompertz-like 
Subdistribution Model 
 

We can incorporate covariates into cure parameter of Gompert-like 

subdistribution model.  The utilization of exponential kernel 

resulted in parametric regression, 

 ( ) ( )[ ]{ }jjjjjjjj ttF ρρτρτ /exp1)'exp(exp1,,,; −−= ββ zz  (6.24) 

and for Weibull kernel it is 

( ) ( )[ ]{ }jjjjjjjjj
jttF ρρταρτ α /exp1)'exp(exp1,,,; −−= ββ, zz  (6.25) 

and also by using Gompertz kernel, we have 

( ) ( )( )[ ]{ }j
t

jjjjjjjj
jetF ρθτθρτ ρ /1exp1)'exp(exp1,,,; −−−−= ββ, zz  (6.26) 

Given competing risks data, we can fit univariate Gompertz-like 

subdistributions (6.19), (6.20) and (6.23) as well as their regression 

model counterparts (6.24) – (6.26) to the data.  Maximum 

likelihood estimation can be used for these purposes.  To do so, we 

have derived the likelihood function as shown in Appendix E. 

 

6.6 Application to Contraceptive Discontinuation Data 

 

We revisited the contraceptive discontinuation data and we fitted 

Gompertz-like subdistribution to data.  As previously discussed, 



 174 

the data was length of time to contraceptive discontinuation which 

was categorized into three causes of discontinuation namely 

failure, abandonment and switching.  First part was on fitting 

Gompertz-like distribution to data without covariates.  The second 

part, we incorporated covariates to the model and regression 

analysis was carried out.   

 

Univariate analysis 

 

Given competing risks sample data (ti,δi), i = 1,…,n, where δi ∈ 

{0,1,2,3} , or (ti,δ1i,δ2i,δ3i,), where δji ∈ {0,1}, j = 1,2,3, we fitted 

Gompertz-like subdistribution with kernel of exponential, Weibull 

and Gompertz as expressed in  (6.19), (6.20) and (6.23).   

 

Exponential kernel 

 

Gompertz-like subdistribution with exponential kernel (6.19) was 

fitted to contraceptive discontinuation data and the result is shown 

in Table 6.5.  We have to estimate all parameters simultaneously, 

because the likelihood function (6.10) cannot be factored into a 

product of 3 cause-specific functions.  Therefore, we only obtained 
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one log-likelihood value (l(ψ) = -10407.68753).  Negative sign of ρ3 

and its small P-value showed that the subdistribution of time to 

discontinuation due to switching (3rd cause) has the improper form.  

Figure 6.9 displayed the estimated curve along with its 

nonparametric counterpart and the fitting agrees reasonably well 

with each other.  

 

Table 6.5.  Result of fitting Gompertz-like subdistribution with 
exponential kernel to contraceptive 
discontinuation data 

Cause of 
failure Parameter Estimate Std. error P-value 

1 τ1 0.000622 0.000130 1.75×10-6 
 ρ1 –0.00660 0.005867 2.60×10-1 
2 τ2 0.005691 0.000349 6.75×10-57 
 ρ2 0.012364 0.001476 8.54×10-17 
3 τ3 0.011585 0.000616 3.68×10-74 
 ρ3 –0.00996 0.001652 1.88×10-9 
 l(ψ) –10407.68753   
 AIC 20827.38   
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Figure 6.9. Curve fitting of Gompertz-like subdistribution with 

exponential kernel to contraceptive 
discontinuation data. 

 

Weibull kernel 

Fitting   model   (6.20)   to   data   gave   the   likelihood   function  

–10404.72578 (see Table 6.6).  This value is less than exponential 

kernel likelihood.  However, its AIC is slightly greater which means 

the exponential kernel fits better.  The result is also similar for 

negative sign of ρ3 which showed improper subdistribution 

function of the 3rd cause.  Plot of estimated curve of 

subdistribution using nonparametric and parametric with Weibull 

kernel is presented in Figure 6.10.  The fitting of both curves are 

quite well.  
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Table 6.6.  Result of fitting Gompertz-like subdistribution with 
Weibull kernel to contraceptive discontinuation 
data 

Cause of 
failure Parameter Estimate Std. error P-value 

1 τ1 0.001105 0.000474 1.98×10-2 
 ρ1 0.008007 0.02986 7.89×10-1 
 α1 0.784187 0.157194 6.48×10-7 
2 τ2 0.00667 0.001099 1.48×10-9 
 ρ2 0.019747 0.009538 3.85×10-2 
 α2 0.936311 0.064797 1.33×10-45 
3 τ3 0.013998 0.001688 1.74×10-16 
 ρ3 –0.00875 0.002589 7.40×10-4 
 α3 0.928885 0.04199 1.37×10-99 
 l(ψ) –10404.72578   
 AIC 20827.45   
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Figure 6.10. Curve fitting of Gompertz-like subdistribution 

with Weibull kernel to contraceptive 
discontinuation data. 
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Gompertz kernel 

 

We obtained the likelihood function –10407.62246 when we fitted 

parametric Gompertz-like subdistribution with Gompertz kernel 

(6.23) to contraceptive data (Table 6.7).  This value corresponds to 

20833.24 of AIC value.  This value is bigger than the previous two 

AIC values, which means Gompertz kernel did not fit the data well.  

Again, ρ3 has negative sign which showed improper subdistribution 

for the 3rd cause and this agrees with estimated curve shown in 

Figure 6.11. 

 

Table 6.7.  Result of fitting Gompertz-like subdistribution with 
Gompertz kernel to contraceptive discontinuation 
data 

Cause of 
failure Parameter Estimate Std. error P-value 

1 τ1 0.034756 0.040212 3.87×10-1 
 ρ1 –0.00653 0.005806 2.61×10-1 
 θ1 0.017901 0.020728 3.88×10-1 
2 τ2 0.664669 0.252604 8.56×10-3 
 ρ2 0.012209 0.001451 6.50×10-17 
 θ2 0.008567 0.003257 8.57×10-3 
3 τ3 0.57312 0.223136 1.03×10-2 
 ρ3 –0.00983 0.001635 2.04×10-9 
 θ3 0.020234 0.007884 1.03×10-2 
 l(ψ) –10407.62246   
 AIC 20833.24   
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Figure 6.11. Curve fitting of Gompertz-like subdistribution 

with Gompertz kernel to contraceptive 
discontinuation data. 

 

Regression Analysis 

 

We modified univariate models to take into account the covariates 

effect to probability of discontinuation.  The resulted regression 

models are expressed in (6.24)-(6.26) and we fitted those three 

models to contraceptive discontinuation data.  The covariates had 

been defined in section 4.3.    

 

Exponential kernel 

 

The result of model fitting with exponential kernel is shown in 

Table 6.8.   This fitting gives likelihood function as  –10416.57532 
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which is equals to AIC value 20893.15.  By using this model, we 

found that probability of discontinuation due to failure is affected 

by Religion covariate.  This result is different with 

semiparametric modelling of Fine and Gray which was presented in 

Table 4.1(a).  For the discontinuation due to abandonment, Age 

and University education level are two covariates which are 

significant.  This result agreed with semiparametric regression of 

Fine and Gray (Table 4.1(b)), even though secondary education 

level and IUD/Implant method are not significant.  Whereas, for 

the discontinuation due to switching beside education and 

method covariates there are two others covariates which are 

significant namely social economic status and age.    

 

Weibull kernel 

 

Table 6.9 gives the result of fitting model (6.25) to the data.  

Probability to failure is affected by age.    Social economic 

status, age and education factor are the significant factors for 

the probability to abandonment.  The significant factors for 

probability to switching are education factor and 

contraception method. 
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Table 6.8.  Regression of contraceptive discontinuation using 
Gompertz-like subdistribution with exponential 
kernel 

Cause of 
failure Parameter Estimate Std. error P-value 

1 τ1 0.00168 0.001672 3.25×10-1 
 ρ1 0.005914 0.006681 3.76×10-1 
 Social Economic Status -0.06044 0.082202 4.62×10-1 
 Age -0.04112 0.021564 5.67×10-2 
 Residence 0.180885 0.271054 5.05×10-1 
 Religion    1.475557 0.657311 2.49×10-2 
 Secondary   -0.29854 0.377395 4.29×10-1 
 University   0.524297 0.438745 2.32×10-1 
 Pills/Injection 0.04691 0.741995 9.50×10-1 
 IUDs/Implants -1.63706 0.913911 7.34×10-2 
2 τ2 0.002379 0.000708 7.92×10-4 
 ρ2 0.023856 0.001732 9.79×10-42 
 Social Economic Status 0.039698 0.021039 5.93×10-2 
 Age 0.020537 0.004715 1.38×10-5 
 Residence 0.014608 0.067415 8.28×10-1 
 Religion    0.062844 0.177222 7.23×10-1 
 Secondary   -0.15573 0.087524 7.53×10-2 
 University   -0.26154 0.114962 2.30×10-2 
 Pills/Injection 0.094764 0.238678 6.91×10-1 
 IUDs/Implants -0.0178 0.247231 9.43×10-1 
3 τ3 0.012674 0.003193 7.40×10-5 
 ρ3 -0.00141 0.001817 4.37×10-1 
 Social Economic Status -0.05281 0.021714 1.51×10-2 
 Age 0.011296 0.005114 2.73×10-2 
 Residence 0.091762 0.068808 1.82×10-1 
 Religion    0.055785 0.180474 7.57×10-1 
 Secondary   0.302452 0.09684 1.81×10-3 
 University   0.670814 0.11812 1.50×10-8 
 Pills/Injection -0.78003 0.17355 7.27×10-6 
 IUDs/Implants -0.9433 0.185076 3.70×10-7 
 l(ψ) -10416.57532   
 AIC 20893.15   
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Table 6.9.  Regression of contraceptive discontinuation using 
Gompertz-like subdistribution with Weibull kernel 

Cause of 
failure Parameter Estimate Std. error P-value 

1 τ1 0.002548 0.003383 4.51×10-1 
 ρ1 0.044685 0.062208 4.73×10-1 
 α1 0.734406 0.163079 6.98×10-6 
 Social Economic Status -0.07029 0.088488 4.27×10-1 
 Age -0.06364 0.024144 8.44×10-3 
 Residence 0.370969 0.264681 1.61×10-1 
 Religion    1.036631 0.873039 2.35×10-1 
 Secondary   -0.50087 0.3464 1.48×10-1 
 University   0.283585 0.407988 4.87×10-1 
 Pills/Injection 1.05101 1.039881 3.12×10-1 
 IUDs/Implants -0.17939 1.072255 8.67×10-1 
2 τ2 0.00291 0.001025 4.54×10-3 
 ρ2 0.045624 0.017866 1.07×10-2 
 α2 0.869848 0.063216 1.19×10-41 
 Social Economic Status 0.049111 0.022415 2.85×10-2 
 Age 0.023565 0.004973 2.27×10-6 
 Residence 0.008399 0.066083 8.99×10-1 
 Religion    0.088932 0.207938 6.69×10-1 
 Secondary   -0.18946 0.086948 2.94×10-2 
 University   -0.44184 0.11507 1.26×10-4 
 Pills/Injection 0.20711 0.271428 4.46×10-1 
 IUDs/Implants 0.145378 0.274732 5.97×10-1 
3 τ3 0.020734 0.006064 6.38×10-4 
 ρ3 0.00446 0.005769 4.40×10-1 
 α3 0.87279 0.043937 6.20×10-82 
 Social Economic Status -0.04349 0.022316 5.14×10-2 
 Age 0.007864 0.005566 1.58×10-1 
 Residence 0.093903 0.068188 1.69×10-1 
 Religion    -0.34902 0.192872 7.05×10-2 
 Secondary   0.255511 0.097517 8.84×10-3 
 University   0.504893 0.117324 1.74×10-5 
 Pills/Injection -0.78513 0.194889 5.77×10-5 
 IUDs/Implants -0.81459 0.20298 6.16×10-5 
 l(ψ) -10372.40251   
 AIC 20810.81   
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Table 6.10.  Regression of contraceptive discontinuation using 
Gompertz-like subdistribution with Gompertz 
kernel 

Cause of 
failure Parameter Estimate Std. error P-value 

1 τ1 0.001791 0.034835 9.59×10-1 
 ρ1 0.000886 0.009151 9.23×10-1 
 θ1 0.968525 18.80398 9.59×10-1 
 Social Economic Status 0.002955 0.084077 9.72×10-1 
 Age -0.06343 0.024072 8.46×10-3 
 Residence 0.247677 0.258665 3.38×10-1 
 Religion    1.007604 0.790109 2.02×10-1 
 Secondary   -0.59107 0.345069 8.68×10-2 
 University   0.066024 0.378178 8.61×10-1 
 Pills/Injection 0.76728 0.89264 3.90×10-1 
 IUDs/Implants -0.5395 0.926109 5.60×10-1 
2 τ1 0.004146 0.003242 2.01×10-1 
 ρ1 0.010952 0.003366 1.15×10-3 
 θ1 0.657719 0.475613 1.67×10-1 
 Social Economic Status 0.016557 0.020575 4.21×10-1 
 Age 0.019896 0.005148 1.14×10-4 
 Residence 0.049314 0.064131 4.42×10-1 
 Religion    -0.0927 0.188302 6.23×10-1 
 Secondary   -0.13897 0.0865 1.08×10-1 
 University   -0.3303 0.10773 2.19×10-3 
 Pills/Injection 0.083262 0.249314 7.38×10-1 
 IUDs/Implants 0.051049 0.252617 8.40×10-1 
3 τ1 0.014218 0.038428 7.11×10-1 
 ρ1 -0.0024 0.003495 4.92×10-1 
 θ1 1.092092 2.93768 7.10×10-1 
 Social Economic Status -0.03737 0.021181 7.78×10-2 
 Age 0.00717 0.005715 2.10×10-1 
 Residence 0.084217 0.06715 2.10×10-1 
 Religion    -0.38757 0.182289 3.36×10-2 
 Secondary   0.259237 0.098914 8.82×10-3 
 University   0.519373 0.113352 4.82×10-6 
 Pills/Injection -0.80098 0.180891 9.9×10-6 
 IUDs/Implants -0.83497 0.190142 1.17×10-5 
 l(ψ) -10361.05516   
 AIC 20788.11   

 

Gompertz kernel 

 

Among the three Gompertz-like subdistribution functions, 

Gompertz kernel has the best fit.  It has the largest log-likelihood 
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and also the minimum AIC (Table 6.10).  Only age which is 

significant to the probability of failure.  Again, age and 

university education level are two covariates which are 

significant to the probability to abandonment.   For the 

discontinuation due to switching, we observed that education, 

contraception method and religion are the significant factors. 

 

Since Gompertz kernel has the best fit, then simple conclusion can 

be drawn based on this result as follows: 1) the older women tend 

to have less chance to failure, but more to abandoning their 

current contraception method, 2) university educated women have 

less probability to abandon their contraceptive methods, but more 

to switching their methods and this happens for secondary 

educated women too, 3) Moslem women have more probability to 

switching, where religion = 0 for Moslem and religion = 1 

otherwise, 4) other modern contraception method users tend more 

to switching compared to pill/injection and IUD/implant user.    

6.7.  Summary 
 

We have demonstrated the use of standard parametric survival 

models in case of competing risks by modeling subdistribution 

functions through non-mixture cure model. Any standard 

parametric survival distributions like exponential, Weibull, 
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gamma and generalized gamma can be employed for kernel of 

the non-mixture cure model which can then be used to specify 

the improper or proper subdistribution functions.  

 

The study also reveals that subdistribution function which 

constructed by using non-mixture cure model with Weibull kernel 

distribution is a generalization of Jeong and Fine (2007), the recent 

parametric modelling of the subdistribution function. Inferential 

procedure by using maximum likelihood estimation indicates that 

likelihood function cannot be factored into a product of cause-

specific functions. So, we fitted all subdistribution jointly. In BMT 

data analysis, the proposed model gave noticeably good fit to the 

nonparametric counterpart, except for the first few days of AML-

low group of patients. 

 

Another issue is regarding the event which occurs at a fairly steady 

rate over the entire time period. This kind of subdistribution is 

better described by a proper distribution. We have proposed 

Gompertz-like subdistribution to solve this problem.  However, we 

cannot extrapolate the subdistribution model to estimate the long 

term probabilities, because its subdistribution value will reach one 

as time goes to infinity.  
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We can incorporate covariates through parameter other than cure 

fraction. It may increase the fitting, but we may lose the linear 

form of the complementary log-log transformation.  
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CHAPTER 7 
 
 

SUMMARY, GENERAL CONCLUSION AND RECOMMENDATION 
FOR FUTURE RESEARCH 

 
 
 
7.1 Summary 

 

The problem of summarizing and making inference about 

competing risks quantities is important in many areas of 

application.  In studies that have multiple endpoints, each subject 

may fail due to one of several possible causes.  Failure rates from 

every cause are often related and their complex action affects 

overall survival time of an individual.  In this work, we have 

presented the main results in modelling competing risks data. 

 

Subdistribution function is the important quantity in summarizing 

and describing competing risks data.  Subdistribution curve 

estimates the chance of ultimately experiencing a particular cause. 

 

The focus of this thesis was on regression methods for 

subdistribution of competing risks. Traditionally, this has been 

done by standard statistical methods based on the cause specific 

hazard rate that treat failures from causes other than the cause of 

interest as censored observations. This includes such technique as 

the Cox proportional hazard model.   
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As was demonstrated earlier, differences in cause specific hazard 

rates for a particular risk do not translate directly into differences 

between subdistribution curves since these curves depend on all 

the competing risks cause specific hazard rates.  In this thesis, we 

developed various regression methods for subdistribution of 

competing risks.   

 

Chapter 3 developed the optimal cutpoint determination method 

for continuous predictor variable in competing risk survival data 

analysis through direct modelling of subdistribution function.  Five 

methods were considered namely the two-sample, Wald, likelihood 

ratio (deviance), delta deviance, and delta null deviance.  To 

compare those five methods and conclude the optimal cutpoints, a 

Monte Carlo experiment was conducted and five statistical 

indicators were used, which were mean, bias, absolute relative 

bias, standard error and root mean square error.  All of these 

criteria are very important in measuring the validity of an estimate, 

and have been used in a variety of statistical considerations.  The 

deviance method was recommended, since the estimated cutpoints 

from this method had the smallest overall rank sums which 

represent the small quantities of those four statistical indicators 

(bias, absolute relative bias, standard error and root mean square 

error).  We illustrated the method by using contraceptive 

discontinuation data.  The optimal cutpoint for age were 34.167, 
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38 and 38 years for the time to the occurrence of contraceptive 

failure, abandonment and switching, respectively.   

 

In general, this cutpoint methodology study is very important in 

the health science field. Implications for health policy attention are 

obvious.  Simple, but yet accurate, guidelines for people will allow 

for easy implementation. 

 

Tree methods provide an excellent way of exploring data.  Brieman 

et al. (1984) have developed the powerful CART algorithm to obtain 

trees of optimal sizes, though what really constitutes an optimal 

tree remains unsolved.  In the spirit of CART, we developed a 

method for competing risks survival trees.  

 

The development of a tree-structured methodology for the analysis 

of competing risk data based on deviance statistic is the goal of 

Chapter 4.  Our modelling is based on the subdistribution hazard, 

since it has closed relation with subdistribution function which is 

the important properties of competing risk data.  For the our 

method based on deviance statistic derived from likelihood ratio 

test to examine the effect of one threshold covariate in 

subdistribution proportional hazard setting, we have adopted the 

pruning strategy proposed by Segal (1988). 
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The method works well for the contraceptive discontinuation data. 

We developed the stratification of group of women in term of their 

risks to each discontinuation type (failure, abandoning and 

switching).  The method also offers the tool for exploring the 

competing risk data thoroughly.  Plots of subdistribution estimates 

are useful description of the subjects within nodes of the tree.  

 

The proposed method intends to provide an exploratory data 

analysis for competing risks data, and it is complimentary rather 

than competitive to those parametric or semi-parametric methods. 

 

We evaluated the method by several simulation studies.  

Simulation results showed that the proposed method performed 

well for group identifications, but the capability of identification 

decreased as percentage of censoring increased. 

 

In Chapter 5, we augment the best AIC subdistribution hazard 

regression model with a tree-structured regression counterpart.  

This method is to boost the model.  Tree-structured regression 

amends deficiencies in the subdistribution hazard, and extends the 

application of trees.  This hybrid model gives a better insight of the 

data. 
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The application of the proposed method to contraceptive 

discontinuation data showed that for the risk to discontinuation 

due to failure the hybrid model did not constitute a substantial 

improvement over best AIC model.  However, the other two hybrid 

models (abandonment and switching risk) have lower AIC 

compared to the corresponding best subdistribution hazard 

regression models.  For the two risks, the augmented tree can 

boost the model. 

 

Sometimes parametric model has more advantages compared to 

nonparametric and semiparametric model.  It gave the efficient 

estimation when the model fits data well.  For this purpose, 

subdistribution modelling through parametric cure model with 

covariates has been developed and presented in Chapter 6. Some of 

the well known kernel distributions were utilized.  Weibull kernel 

distribution is a generalization of the recent parametric modelling 

of the subdistribution function. Inferential procedure by using 

maximum likelihood estimation indicated that likelihood function 

cannot be factored into a product of cause-specific functions. 

Therefore, we fitted all subdistributions jointly. 

 

Simulation results showed that maximum likelihood procedure 

performed well for parameter estimation.  In BMT data analysis, 

the proposed model gave noticeably good fit to the nonparametric 



 192 

counterpart, except for the first few days of AML-low group of 

patients.  

 

The Gompertz-like subdistribution model is useful when the form 

of subdistribution might be proper.  The model is used for the case 

of occurrence at a fairly steady rate over the entire time period.  

The application of this model to contraceptive discontinuation data 

gave the reasonable result.  

 

In conclusion, the proposed models are useful in studying the 

relationship between covariates and competing risks survival time 

data through modelling subdistribution function.  In particular, 

regression trees, hybrid and parametric model might be considered 

as another way of modelling competing risks data. 

 

7.2 Direction for Further Research 

 

There are some directions in which further research can proceed.  

Firstly, we can develop model which grows trees based on 

homogeneity measure of residual similar with survival trees 

proposed by Therneau et al. (1990).  Unfortunately, for 

subdistribution hazards regression the residual is only available for 

subjects with uncensored data (Schoenfeld residual).  To proceed 

on this idea, we have to construct a residual which is defined for 
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all subjects (censored and uncensored data) first which is similar 

to Martingale residual.   

 

Secondly, we can study the cutpoint determination, tree-structured 

and hybrid methods based on parametric regression on 

subdistribution function (Chapter 6).  Of course, we have to select 

the suitable underlying kernel distribution first.   The kernel 

distributions can also be extended to a more broad range of well 

known distributions, such as lognormal and loglogistic.   

 

For the parametric regression of subdistribution function, we can 

incorporate covariates through parameter other than cure fraction. 

It may increase the fitting, but we may lose the linear form of the 

complementary log-log transformation.   
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APPENDIX A 
 

The procedure of nonparametric estimation of subdistribution 
function with illustration 
 
 

The Procedure 

In the first step, we calculate the Kaplan-Meier estimate of the 

overall survival from any event.  Both the event of interest as well 

as the competing risk event are considered ‘events’.  In the second 

step, the conditional probabilities of experiencing the event of 

interest are calculated.  The subdistributions are estimated using 

these probabilities.  The step-by-step calculations are detailed 

below. 

 

Step 1: 

Calculate the overall survival probability of being ‘event-free’. 

1. An ‘event’ is any event – the onset of the event of interest or 

the competing risk event.  Anyone not experiencing the ‘event’ 

(i.e. event free) is considered censored. 

2. The Kaplan-Meier survival probabilities corresponding to the 

‘event’ are calculated using the usual procedure. 

Step 2: 

Calculate the cumulative probability of experiencing the event of 

interest. 
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1. Consider the interval between event-of-interest times tr-1 and 

tr.  (Note that a competing risk event may occur in this 

interval.) 

2. The probability of failure for the event of interest, jth cause, is 

defined as one minus the probability of survival given by λj(tr) 

= 1–(nr–dr)/nr, where nr is the number of units at risk before 

time tr and dr is the number of event of interest  at time tr. 

3. Now, consider the overall survival probability of surviving any 

‘event’ (both the event of interest and the competing risk 

event) up to, but not including, time tr.  This can be obtained 

from the calculation step 1, and is denoted by S(tr-1). 

4. Accounting for competing risk, the incidence of the event of 

interest for this interval is estimated as the product S(tr-1)× 

λj(tr).  This can be interpreted as the joint probability of 

experiencing the event of interest in this time interval given 

that the units survived both the event of interest and the 

competing risk event in all prior intervals. 

5. The subdistribution to the end of this time interval is defined 

as the sum of the incidence in this interval and all previous 

time intervals. 

The subdistribution of every distinct type of failure can be 

calculated as described above.  The subdistribution of any event by 

a given time will be the sum of the incidence of all distinct failures 

by that time. 
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Illustration 

Suppose that we consider the Bone Marrow Transplant (BMT) data.  

BMT is a standard treatment for acute leukemia.  Recovery 

following bone marrow transplantation is a complex process.  

Transplantation can be considered a failure when patient’s 

leukemia return (relapse) or when he or she dies while in remission 

(treatment related death) (Klein and Moeschberger, 2003).  We 

apply the method to estimate subdistribution function of relapse 

for acute lymphoblastic leukemia (ALL) patients.    

 

Table A.1. Illustration of the subdistribution of relapse for BMT 
data set using the competing approach 

 
 
(a) BMT data for ALL patientsa 

Patient 
number 

Follow-up 
time 

Status  Patient 
number 

Follow-up 
time 

Status 

1 1 2  20 418 2 
2 55 1  21 466 2 
3 74 1  22 487 2 
4 86 2  23 526 2 
5 104 1  24 530 0 
6 107 2  25 609 1 
7 109 1  26 662 1 
8 110 1  27 996 0 
9 122 1  28 1111 0 
10 122 2  29 1167 0 
11 129 1  30 1182 0 
12 172 2  31 1199 0 
13 192 1  32 1330 0 
14 194 2  33 1377 0 
15 226 0  34 1433 0 
16 230 1  35 1462 0 
17 276 2  36 1496 0 
18 332 2  37 1602 0 
19 383 1  38 2081 0 

aThe follow-up (in days), event status (1=relapse, 2=treatment related death, or 0=alive). 
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(b)  An illustration of estimating subdistribution accounting for 
competing risk for BMT data, type ALL patients, listed above 

 
Step 1 

 
Time interval 

(tr) 

 
# at risk 

(nr) 

 
# of events 

(dr) 

Survival 
probability 
((nr-dr)/nr) 

 
Overall survival (S(tr)) 

[0,1) 38 0 1 1 
[1,55) 38 1 37/38 37/38 
[55,74) 37 1 36/37 36/38 
[74,86) 36 1 35/36 35/38 
[86,104) 35 1 34/35 34/38 
[104,107) 34 1 33/34 33/38 
[107,109) 33 1 32/33 32/38 
[109,110) 32 1 31/32 31/38 
[110,122) 31 1 30/31 30/38 
[122,129) 30 2 28/30 28/38 
[129,172) 28 1 27/28 27/38 
[172,192) 27 1 26/27 26/38 
[192,194) 26 1 25/26 25/38 
[194,230) 25 1 24/25 24/38 
[230,276) 23 1 22/23 (24/38)×(22/23) 
[276,332) 22 1 21/22 (24/38)×(21/23) 
[332,383) 21 1 20/21 (24/38)×(20/23) 
[383,418) 20 1 19/20 (24/38)×(19/23) 
[418,466) 19 1 18/19 (24/38)×(18/23) 
[466,487) 18 1 17/18 (24/38)×(17/23) 
[487,526) 17 1 16/17 (24/38)×(16/23) 
[526,609) 16 1 15/16 (24/38)×(15/23) 
[609,662) 14 1 13/14 (24/38)×(15/23)×(13/14) 
[662,∞) 13 1 12/13 (24/38)×(15/23)×(12/14) 

 

Step 2 
 

Time 
interval 

(tr) 

 
# at 
risk 
(nr) 

 
# of 

events 
(dr1) 

 
Failure 

probability 
(λ1(tr)) 

Survival 
up to 
time tj 
(S(tr-1)) 

 
Incidence 
S(tr-1)×λ1(tr) 

 
Subdistribution 

(F1(tr))(%) 

[0,55) 38 0 0 1 0 0 
[55,74) 37 1 1/37 37/38 1/38 1/38 
[74,104) 36 1 1/36 36/38 1/38 2/38 
[104,109) 34 1 1/34 34/38 1/38 3/38 
[109,110) 32 1 1/32 32/38 1/38 4/38 
[110,122) 31 1 1/31 31/38 1/38 5/38 
[122,129) 30 1 1/30 30/38 1/38 6/38 
[129,192) 28 1 1/28 28/38 1/38 7/38 
[192,230) 26 1 1/26 26/38 1/38 8/38 
[230,383) 23 1 1/23 24/38 12/437 104/437 
[383,609) 20 1 1/20 (24/38)× 

(20/23) 
12/437 116/437 

[609,662) 14 1 1/14 (24/38)× 
(15/23) 

90/3059 902/3059 

[662,∞) 13 1 1/13 (24/38)× 
(15/23)× 
(13/14) 

90/3059 992/3059 
=0.3243 
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The estimation of subdistribution of relapse is outlined in Table 

A.1.b.  The overall survival from any event given under Step 1 of 

Table A.1 is calculated using the Kaplan-Meier approach.  In step 2 

of Table A.1.b, we calculate the probability of event of interest, that 

is relapse, from 55 days up to 74 days is 1/37.  From step 1 we 

know that probability of surviving (i.e. neither relapse nor dead) up 

to but not including 55 days is 37/38.  Therefore, the incidence of 

relapse from 55 days up to 74 days is  1/37 × 37/38  = 1/38.   

 

Figure A.1 illustrates the subdistribution corresponding to relapse.  

It is to be noted that the subdistribution of any event is the sum of 

the subdistribution of the event of interest and the subdistribution 

of the competing risk events.  Therefore the cumulative event 

among the leukemia patients is the sum of the cumulative relapse 

and the cumulative death.   
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Figure A.1. Subdistribution of Relapse 
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APPENDIX B 
 

Two sample test for comparing subdistribution function 
(Gray, 1988) 
 

Data consist of paired observation (Tik,δ ik) where T ik is the time 

on study and δik is an indicator of the cause of removal from the 

study, where i is index for individual, i = 1,…, nk; and k is index 

for group k = 1,…, K.  We will emphasize on the case K = 2. 

 

Let F jk(t) be the subdistribution function for cause j  in group k  

at time t. The hypothesis o f  interest is the equality of 

subdistribution failure type 1 across populations, i.e.: 

H0 : F11(t) = … = F1K(t) = ( )tF 0
1 ,  for all t ≤ τ    versus 

H1 : at least one of the F1k(t) 's is different for some t ≤ τ. 

where ( )•0
1F  is an unspecified subdistribution function.  

Inference is to the subdistribution functions for all time points 

less than τ, which is usually taken to be the largest time on 

study. The Fjk(t)'s are assumed to be continuous with 

subdensities fjk(t).  

 

The test statistic is based on the (improper) random variable, 

*
ikX ,  i  = 1,…, nk; k  = 1,…, K. This random variable is defined by 
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



>∞
=

=
1 if,
1 if,*

ik

ikik
ik δ

δT
X    (B.1) 

Then ( ) ( ) ( )tFtTPtXP kikikik 1
* 1, ==≤=≤ δ  and the hazard rate for 

*
ikX  is ( )tikλ~  given by 

 ( ) ( )
( )

( )
( )tF

tf
tF
dttdFt

ik

ik

ik

ik
ik −

=
−

=
11

/~λ    (B.2) 

Let kF1̂  be the estimated subdistribution function for cause 1 and 

sample k  and ( )tF 0
1̂  be a similar estimator based on the pooled 

sample. Let ( )−tSk
ˆ  be the left-hand limit of the Kaplan-Meier 

estimate of the overall survival function in sample k  obtained by 

considering failure from any cause as an event. ( )−tSk
ˆ  is defined 

to be 0 when Yk(t) = 0.  The K sample statistic will be defined by 

assigning a score to each group which compares 

subdistribution hazard jkλ~  for each group to a combined 

estimate of this hazard under the null hypothesis.  Gray (1988) 

define 

 ( ) ( ) ( ) ( )[ ] ( )−−−≥= tStFtYtIt kkkkk
ˆ/ˆ1 1τΞ   (B.3) 

The quantities τk represent the largest time on study in group k. 

An estimate of the cumulative subdistribution hazard function 

for the cause of interest in sample k, ( ) ( )∫=
t

kk duut
0

11
~~ λΛ , is given 

by 
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udN
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= ∫∫ −
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The expression for k1
~̂Λ  suggests taking 

 ( ) ( )
( )∫

•

•=
t

uR
udNt

0

10
1

~̂Λ    (B.5) 

as an estimator for 0
1

~Λ , the null value of k1
~Λ . This estimator is 

consistent under the null hypothesis. 

 

K sample tests are based on scores of the form 

 ( ){ }( )∫ −=
k

tddtWZ kkk

τ

ΛΛ
0

0
11

~̂~̂   (B.6) 

where Wk(•) is suitably chosen weight functions. When the null 

hypothesis is true, Z = (Z1,…, Zk)' has an asymptotic K-variate 

normal distribution with zero mean and covariance matrix Σ 

which can be consistently estimated by Σ̂  with components 

given by 

 
( ) ( )

( ) ( )∑ ∫

∑ ∫

=

∧
−

=

∧
−

+

=

K

k
kkkjjk

K

k
kkjjkjj

jj

jj

tFdhbtb

tFdhata

1 0
2

1
'22

1 0

0
1

1
'

2
'

'

'

ˆ

ˆˆ

ττ

ττ

σ

   (B.7) 

where 

( ) ( ) ( )tbtdta jkjkjk 1+=  

( ) ( ) ( )( ) ( )[ ] ( ) ( )[ ]tcctStFlItb jkjjkkljk −−−== − τ00
1

ˆ/ˆ11  
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( ) ( ) ( )∫=
t

jkjk ududtc
0

0
1

~̂Λ  

( ) ( ) ( ) ( ) ( )[ ] ( )[ ]tFththkjItWntd kjjk
0

1
1 ˆ1/ˆ/ˆ −−== •

−  

Here, ( ) ( ) ( ) ( )−− ≤= tStYtInth kkkk
ˆ/ˆ 1 τ  and an estimate of ( )tF 0

1  is 

given by 

 ( ) ( )
( )∫

•

•−=
t

uh
udNntF

0

110
1̂    (B.8) 

In practice the weight functions Wk(t) are generally of the form 

L(t)Rk(t), for some function L(t). In this case, 0
1

=∑ =

K

k kZ , so only 

K - 1 of the scores are linearly independent. An appropriate K-

sample test statistic can then be formed by using a quadratic 

form consisting of K - 1 components of Z and their estimated 

variance-covariance matrix 0Σ̂ : 

 ( ) ( )( ) ( ) ( )( )',...,,..., 11
1

011
2 ττττ −

−
−= KK ZZZZX Σ   (B.9) 

When the null hypothesis is true, this statistic has an 

asymptotic chi-squared distribution with K – 1 degrees of 

freedom. 

 

The form of the test statistic (B.9) is clear when only two groups 

are being compared. For this case it is proposed that tests be 

based on a score of the form 
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where W(.) is a weight function. This statistic compares 

weighted averages of the subdistribution hazards f lk/(1 - F lk) in 

two groups. With the Wk(t) in (B.6) being of the form L(t)Rk(t), 

and setting W(t) = L(t)R1(t)R2(t)/[R1(t)+R2(t)] in (B.10), it can be 

verified that (B.6) has the desirable property of reducing to (B.10) 

when only two groups are being compared. 
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APPENDIX C 
 

The proportional subdistribution hazard regression model 
(Fine and Gray, 1999) 
 

We assume that there are only two competing risks and the risk 

indexed by 1 is of the main interest. Let T be the failure time, 

let δ be an indicator of the cause of the removal from the study, 

and let Z be a p×1 covariate vector. Our interest is in modeling 

the subdistribution function for failure from cause j conditional 

on the covariates, Fj(t;Z) = P{T ≤ t, δ = j| Z}.  Inference will be 

based on a sample of size n consisting of the triplets (T i,δ i,Z i), 

where T i is the time on study for the ith patient, δ i is the event 

type indicator, and Z i is the vector of covariates for the ith 

individual. 

 

The complement of subdistribution function is equal to 

 ( ) ( )( )ZZ |;1 jtTtTPtF j ≠∩≤∪>=− δ   (C. 1) 

and the subdistribution hazard is given by 



 215 

( )
( )
( )
( ) ( )

( )
( )

( )
( )

( )
( )

0

0

0

0

ln 1 ,   for 1,2,...,
1

lim

1

,
lim

1

,
lim

,

, | ,
lim

j

j
j

j j

j

j

d F td dtF t j J
dt F t

F t F t

F t

P t T t j

F t

P t T t j

P T t T t j

P t T t j T t T t j

δ

δ

δ

δ δ

∆→

∆→

∆→

∆→

 − − = =  −

+ ∆ −
∆=

−

≤ < + ∆ =
∆=

−

≤ < + ∆ =
∆=

> ∪ ≤ ≠  
≤ < + ∆ = > ∪ ≤ ≠  =

∆

  

 ( )λ= %
j t   (C.2) 

jλ
~  can be seen as the hazard rate function of the improper variable 

X* as previously defined by  





>∞
=

=
1 if,
1 if,*

ik

ikik
ik δ

δT
X  

The difference between cause-specific hazard rate and 

subdistribution hazard is in the risk set.  For the cause-specific 

hazard, the risk set decreases at each time point at which there is 

a transition to another event.  For jλ~ , individuals who fail due to 

risk other than j remain in the risk set.  If there is no censoring, 

they remain in the risk set forever.  If there is censoring, they 

remain in the risk set until their potential censoring time. 
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The model assumes a proportional hazard form for jλ~ .  In this 

model, given a covariate Z, the conditional subdistribution hazard 

rate ( )Ztj ;~λ  is a product of an arbitrary baseline hazard rate ( )tj 0
~λ  

and the exponential of the covariate.  That is, 

 

 ( ) ( ) ( )ZZ 'exp~;~
0 βtt jj λλ = ,  (C.3) 

 

from (C.2) ( ) ( )[ ]tF
dt
dt jj −−= 1log~λ , so this model corresponds to a 

semiparametric transformation model  

 

 ( ) ( ) ( ){ }ttF jj
*
0

~'expexp1; λ×−−= ZZ β  (C. 4) 

 

where ( ) ( )∫=
t

jj duut
0

0
*
0

~~ λλ , and it can be expressed in linear model 

form as 

 ( ){ } ( ) ZZ '~; *
0 β+= ttFg jj λ  (C. 5) 

with a link function g being complementary log-log function, g(u) = 

log(−log(1−u)) and ( )⋅*
0

~
jλ  being some unspecified function. 

 

First assume that there are no censored observations: everyone is 

seen to progress to an end point.  The risk set consists of all 

individuals who have not yet failed of the cause of interest or who 
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will never experience this event type: Ri = {i’ : (Ti’ ≥ ti) ∪ (Ti’ ≤ ti ∩ δi’ ≠ 

j}.  The risk set leads to a partial likelihood for the improper 

distribution Fj(t;Z): 
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i i
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= ∈
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The log partial likelihood is 
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The score obtained by differentiating the log partial likelihood with 

respect to β: 
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Defining the counting process Ni(t) = I{Ti ≤ t, δi = j} and Yi(t) = 1 – 

Ni(t-), we obtain as score function 

 ( ) ( ) ( )
( ) ( )

( )∑∫
=

∞









−=

n

i
i

iii

iiii
i sdN

sY
sY

1 0
'''

''''
'exp

'exp
Σ
Σ

Z
ZZZ

β
β

βU  (C.9) 

Next, suppose some individuals may be censored, but that for each 

individual the potential censoring time Ci is known.  This occurs if 

censoring is due to cutoff date of analysis.  Then the risk set 

consists of all individuals who did not yet pass their censoring time 

and who have not (yet) failed of the cause of interest Ri = {i’ : (Ci’∧Ti’ 

≥ ti) ∪ (Ti’ ≤ ti ∩ δi’ ≠ j ∩ Ci’ ≥ ti}.  The subdistribution hazard 
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incorporating this type of censoring is equal to the subdistribution 

hazard with complete data: 
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The estimator of the parameter vector β is obtained by solving 

the equation U(β) = 0. Using standard counting process 

techniques, the usual results are obtained: if β0 is the true 

value of β, then ( )0
ˆ2

1
ββ −n  is asymptotically normal with 

limiting covariance matrix I-1 with I consistently estimated by 
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and, for a vector v, ',10 vvvv,vv 21 === ⊗⊗⊗ . 

 

Under general right censoring, inverse probability of censoring 

weighting (IPCW) techniques is used.  Now we have  
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ω .  Here X = min(T,C) and Ĝ  is the 

Kaplan-Meier estimate of the survival function of the censoring 

random variable P(C≥t), obtained from data {Xi, 1−δi, i = 1, …, n}.  
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Note that ωi(t) is non-zero for censored individuals up to time of 

censoring. 

 

The consistent estimator of the parameter vector β is obtained 

by solving equation U(β) = 0 (equation 2.31).  Taking a Taylor 

series expansion of ( )β̂U  around β0, the true value of β, a first 

order approximation holds: 

( ) ( ){ }0
1

0
2

1
2

1 ˆ βββ UI −−≈− nn  

where I-1 is the limit of the negative of the inverse of the partial 

derivative matrix of the score function evaluated at β0. With the 

right-censored data, a consistent estimate for I is given by 
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and, for a vector v, ',10 vvvv,vv 21 === ⊗⊗⊗ . 

 

It can be shown that ( )0
2

1
βU−n  has a normal limiting 

distribution with zero mean and covariance matrix Ω which can 

be consistently estimated with the empirical covariance matrix 
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Given the true value of β, β0, the distribution of ( )0
ˆ2

1
ββ −n  can 

be approximated by a normal distribution with mean zero and 

covariance matrix 11 ˆˆˆˆ -- ΙΙ ΩΣ = . Inference about covariate effects 

on the subdistribution function can be based on this asymptotic 

result. Hypothesis testing problem based on this model will be 

addressed in the next subsection.  
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Appendix D 
 
Likelihood function for kernel distribution of exponential, 
Weibull, Gompertz, gamma and generalized gamma in 
modelling subdistribution based non-mixture cure model 
 

Since the derived-subdistribution function which utilized non-
mixture cure model is expressed by 
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where ( )Jψψψ ,...,1= with ( )jKjjjj ββκθψ ,...,,, 1=  for j=1,…,J. 
 

2. Weibull kernel with parameter (κ,α) 
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3. Gompertz kernel with parameter (ρ,τ) 

subdistribution: 
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4. Gamma kernel with parameter (κ,γ) 
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 where I(.) is incomplete gamma function  

( ) ( ) ∫ −−=
t

udueutI
0

11, γ
γΓγ  

 

5. Generalized gamma kernel with parameter (κ,γ,α) 
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likelihood: 
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APPENDIX E 

 
Likelihood function for parametric regression with Gompertz-
like subdistribution model 
 
 

1. Exponential kernel 
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where ( )Jψψψ ,...,1= with ( )jKjjjj ββρτψ ,...,,, 1=  for j=1,…,J. 
 

2. Weibull kernel 

subdistribution: (6.25)  
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3. Gompertz kernel 

subdistribution: (6.26)  

subdensity: 
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