JOURNAL OF BIOMEDICINE AND TRANSLATIONAL RESEARCH

Copyright©2020 by Faculty of Medicine Diponegoro University and Indonesian Society of Human Genetics

Research Article In silico Identification of Characteristics Spike Glycoprotein of SARS-CoV-2 in the Development Novel Therapeutic Candidates for COVID-19 Infectious Diseases

Taufik Muhammad Fakih*, Mentari Luthfika Dewi

Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung, Indonesia

Article Info	Abstract
History	Background : The emergence of infectious diseases caused by SARS-CoV-2 has
Received: 19 Mar 2020	resulted in more than 90,000 infections and 3,000 deaths. The coronavirus spike
Accepted: 14 Aug 2020	glycoprotein encourages the entry of SARS-CoV-2 into cells and is the main target of
Available: 31 Aug 2020	antivirals. SARS-CoV-2 uses ACE2 to enter cells with an affinity similar to SARS-
Available: 51 Aug 2020	
	CoV, correlated with the efficient spread of SARS-CoV-2 among humans.
	Objective : In the research were performed identification, evaluation, and exploration
	of the structure of SARS-CoV and SARS-CoV-2 spike glycoprotein macromolecules
	and their effects on Angiotensin-Converting Enzyme 2 (ACE-2) using in silico studies.
	Methods: The spike glycoproteins of the two coronaviruses were prepared using the
	BIOVIA Discovery Studio 2020. Further identification of the three-dimensional
	structure and sequencing of the macromolecular spike glycoprotein structure using
	Chimera 1.14 and Notepad++. To ensure the affinity and molecular interactions
	between the SARS-CoV and SARS-CoV-2 spike glycoproteins against ACE-2
	protein-protein docking simulations using PatchDock was accomplished. The results
	of the simulations were verified using the BIOVIA Discovery Studio 2020.
	Results : Based on the results of the identification of the macromolecular structure of
	the spike glycoprotein, it was found that there are some similarities in characteristics
	between SARS-CoV and SARS-CoV-2. Protein-protein docking simulations resulted
	that SARS-COV-2 spike glycoprotein has the strongest bond with ACE-2, with an
	ACE score of -1509.13 kJ/mol.
	Conclusion: Therefore, some information obtained from the results of this research
	can be used as a reference in the development of SARS-CoV-2 spike glycoprotein
	inhibitor candidates for the treatment of infectious diseases of COVID-19.
	minoror candidates for the treatment of infectious diseases of COVID-17.
	Keywords: COVID-19; SARS-CoV-2; spike glycoprotein; ACE-2, in silico study.

Reywords: COVID-19; SARS-CoV-2; spike glycoprotein; ACE-2, *in silico* stu **Permalink/ DOI:** https://doi.org/10.14710/jbtr.v6i2.7590

INTRODUCTION

Three types of coronaviruses have caused deadly pneumonia in humans since the beginning of the 21st century, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle-Eastern respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2.¹

* Corresponding author: E-mail: taufikmuhammadf@gmail.com (Taufik Muhammad Fakih) SARS-CoV appeared in Guangdong province in China in 2002, infecting 8098 people and causing 774 deaths. In 2012, MERS-CoV appeared in the Arabian Peninsula, infecting a total of 2,494 individuals and claimed 858 lives.² Recently appeared a coronavirus named SARS-CoV-2 which was discovered in December 2019 in Wuhan, Hubei province of China. SARS-CoV-2 is linked to an ongoing atypical pneumonia outbreak (COVID-19) which has affected more than 90,000 people and killed more than 3,000 people affected in 60 countries.³ The World Health Organization (WHO)