BAB IV

PENGUMPULAN DATA DAN HASIL PENELITIAN

4.1 Pengumpulan Data

Pengumpulan data geoteknik ini pada tambang batugamping **PT Indocement Tunggal Prakarsa** ini meliputi pemetaan geoteknik, pengamatan model kelongsoran yang terjadi, dan *sampling boulder* untuk uji *point load* di laboratorium. Studi geoteknik ini dilakukan karena adanya kelongsoran pada lereng Kuari C.

4.1.1 Pemetaan Geoteknik

Pemetaan geoteknik ini bertujuan untuk mendapatkan informasi mengenai kondisi massa batuan guna menentukan parameter kekuatannya. Pemetaan geoteknik ini difokuskan pada kelompok massa batuan lereng Kuari C, yang terdiri dari lapisan lempung dan lapisan batugamping yang masih memungkinkan untuk dijangkau dan dipetakan, untuk contoh lokasi pemetaan dapat dilihat pada **Gambar 4.1**. Data yang didapat dari pemetaan ini meliputi *strength index, RQD, joint spacing, joint conditions*, dan orientasi bidang diskontinuitas (struktur).

Gambar 4.1 Lokasi Pengukuran *Scanline*

Lokasi pemetaan geoteknik yang berhasil dijangkau dan dianggap cukup mewakili kondisi di Kuari C yaitu CP1, DP1, DP2. Koordinat lokasi pemetaan dapat dilihat pada **Tabel 4.1**

Lokasi	Kode Pengamatan	Kuari	Easting (mE)	Northing (mN)	Elevasi (mdpl)	Keterangan
	CP1	C	212311	9256404	128	Scanline
	CF1		212344	9256237	170	Longsor
PT Indocement Palimanan	DP1	D	212507	9256755	115	Scanline
5	DP2	D	212504	9256755	114	Scanline
4	A'P1	A	212259	9256053	163	Scanline

Tabel 4.1 Koordinat Pengamatan dan Pengukuran Scanline Kuari C

Sumber : Lapi ITB, 2013.

Dari hasil pemetaan geoteknik pada masing-masing titik pengamatan *scanline* yang dilakukan pada CP1 dengan kelas masa batuan *Fair Rock*, DP1 dengan kelas masa batuan *Fair Rock*, DP2 dengan kelas masa batuan *Fair Rock*, A'P1 dengan kelas masa batuan *Fair Rock*, A'P1 dengan kelas masa batuan *Fair Rock*, at the test masa batuan *Fair Rock* at the test

Resume Kelas Massa Batuan Hasil Scanline											
	Parameter								Rock		
Ko	de	Strength of	Spacing of	Discontinuity	Separation	Roughness	Inf il ling	Weathering	Ground	RQD	Mass
		Intact Rock	Discontinu <mark>e</mark> s	Length	TA	KY			Water		Class
CD1	Value	R4	С	М	М	SR	H2	MW	WT	79.85%	Fair Rock
GFT	Rating	7	8	2	1	3	2	3	7	12	45
0.04	Value	R4	С	L	М	R	H2	SW	D	68.32%	Fair Rock
DPI	Rating	7	8	4	1	5	2	5	10	12	54
0.00	Value	R4	С	М	0	R	S2	MW	WT	74.93%	Fair Rock
DP2	Rating	7	8	2	0	5	0	3	7	12	44
A'P1 -	Value	R3	С	L	Т	R	S1	MW	WT	71.91%	Fair Rock
	Rating	4	8	4	4	5	2	3	7	12	49

Tabel 4.2 Resume Kelas Massa Batuan Hasil Scanline

Setelah dilakukan pembobotan *Rock Mass Rating* untuk mengetahui kelas masa batuan, didapatkan kelas masa batuan Fair Rock menandakan bahwa kekuatan batuan tersebut masih dalam kondisi yang fair atau sedang. Hasil dari pembobotan ini akan dijadikan sebagai acuan dalam menganalisis stabilitas lereng.

4.1.2 Pengeboran Geoteknik

Pengeboran geoteknik ini dilakukan dengan metode *full coring* yang bertujuan untuk mengambil sampel batuan yang berada dibawah permukaan. Sampel batuan yang telah diambil akan dilakukan pengujian untuk mengetahui sifat fisik dan sifat mekanik dari batuan.

Dalam penentuan titik pengeboran geoteknik harus mempertimbangkan kondisi geologi wilayahnya serta mempertimbangkan *ultimate pit limit.* Pengeboran di **PT Indocement Tunggal Prakarsa** dilakukan pada 4 titik yaitu titik GT-01, GT-02, GT-03, GT-04. Namun lokasi pengeboran yang dianggap mewakili pada daerah penelitian adalah GT-01, GT-02 saja seperti pada **Gambar 4.2**. Untuk koordinat titik pengeboran dapat dilihat pada **Tabel 4.3**.

	Koordin	Tabel 4 at Titik P	.3 Pengebora	n			
	KODE LUBANG	KOO	KOORDINAT TITIK BOR				
	BOR	X (mE)	Y (mN)	Z (mdpl)			
).	GT-01	212541	9256043	168			
	GT-02	213004	9256213	87			
5	GT-03	213006	9255855	78			
	GT-04	212789	9255419	89			
	Sumber : Lapi ITB, 20	013.					

4.2 Sifat Fisik dan Mekanik Batuan

4.2.1 Sifat Fisik Batuan

Pengujian sifat fisik batuan harus dilakukan untuk mengetahui sifat fisik dari batuan itu dan parameter seperti *natural density* yang akan digunakan sebagai input parameter untuk menganalisis kestabilan lereng. Pengujian ini mengacu pada standar ASTM (*American Society Testing Materials*) C97.

Dari hasil pengujian sifat fisik didapatkan nilai *natural density* untuk lithologi *claystone* sebesar 0,0206 – 0,0207 MN/m³, *limestone* sebesar 0,283 – 0,285 MN/m³, *Lime-Marly* sebesar 0,0272 MN/m³, *Lime-Rich* sebesar 0,0286 MN/m³, *Clay-Rich* sebesar 0,0214 MN/m³.

4.2.2 Uji Kuat Geser

Pengujian kuat geser yang dilakukan mengacu pada ISRM (*Internation Society for Rock Mechanics*) untuk menentukan kekuatan geser pada batuan hasil coring. Hasil dari pengujian kuat geser akan didapatkan adalah nilai kohesi dan sudut gesek dalam.

Dari hasil pengujian kuat geser didapatkan nilai kohesi (C) dan sudut gesek dalam (Θ) untuk lithologi *claystone* C = 0,312 – 0.156 MPa dan Θ = 26,96° – 27,89°, *limestone* C = 0,233 – 0,235 MPa dan Θ = 36,88°, *Lime-Marly* C = 0,269 MPa dan Θ = 34,32°, *Lime-Rich* C = 0,236 MPa dan Θ = 35,89°, dan *Clay-Rich* C = 0,151 MPa dan Θ = 29.74°.

4.2.3 Uji Kuat Tekan

Pengujian kuat tekan yang dilakukan mengacu pada ASTM (*American Society Testing Materials*) C170 dimana merupakan standar metode *compressive strength* dan dimensi batuan. Pengujian kuat tekan ini bertujuan untuk mendapatkan nilai *Modulus Young* dan *Poisson Ratio* yang akan digunakan sebagai input parameter dalam analisis stabilitas lereng.

Dari hasil pengujian kuat tekan didapatkan nilai *Modulus Young* dan *Poisson Ratio* untuk lithologi *claystone* 4125,35 – 1839,16 MPa dan 0,26 – 0,27, *limestone* 356,54 MPa dan 0,23, *Lime-Marly* 12842,47 MPa dan 0,24, *Lime-Rich* 6471,91 MPa dan 0,23, dan *Clay-Rich* 571,96 MPa dan 0,29.

Untuk lebih jelasnya mengenai input parameter yang akan digunakan dalam analisis stabilitas lereng dapat dilihat pada **Tabel 4.4.**

Gambar 4.2 Peta Garis Penampang dan Bebaran Titik Bor

Material Pendekatan (Mpa) 0 <th0< th=""> 0</th0<>	Section 9 (Barat Laut)		Berat Jenis (MN/m3	Young Modulus	Poison Ratio	Tensile Strength	_φ p (deq)	Cp (Mpa)	Kedalaman (m)
Claystone GT01/31,32 0,0206 4125,35 0,26 0,709 27,89 0,132 92,3-9 Limestone GT04/19,21 0,0285 356,54 0,23 0,673 36,88 0,233 93,25-5 Lime-rich GT03/07,09 0,0286 6471,91 0,23 0,679 35,89 0,266 109,4-11 Lime-Marly GT01/142 0,0272 12842,47 0,24 1,579 34,32 0,269 212-2 Clay-rich GT04/16,17 0,0214 571,96 0,29 0,12 29,74 0,151 76,777 Section 9' (Tenggara) Berat Jenis (MN/m3 Young Modulus (Mpa) Poison Ratio Tensile Strength op Cp Kedalar Claystone GT04/04 0,0207 1839,16 0,27 0,708 26,96 0,156 16,03-16 Limestone GT04/19,21 0,0285 356,54 0,23 0,673 36,88 0,233 93,25-5 Lime-rich GT04/16,17 0,0214 571,96	Material	Pendekatan		(Mpa)		5	()/		()
Limestone GT04/19,21 0,0285 356,54 0,23 0,673 36,88 0,233 93,254 Lime-rich GT03/07,09 0,0286 6471,91 0,23 0,679 35,89 0,236 109,411 Lime-Marly GT01/42 0,0272 12842,47 0,24 1,579 34,32 0,269 212-2 Clay-rich GT04/16,17 0,0214 571,96 0,29 0,12 29,74 0,151 76,7-77 Section 9' (Tenggara) Berat Jenis (MN/m3 Young Modulus (Mpa) Poison Ratio Tensile Strength wp (deg) Cp (Mpa) Kedalar (m) Claystone GT04/04 0,0207 1839,16 0,27 0,708 26,96 0,156 16,03-16 Lime-Marly GT01/42 0,0272 12842,47 0,24 1,579 34,32 0,269 212-2 Lime-rich GT03/07,09 0,0286 6471,91 0,23 0,673 36,88 0,233 109,4-11 Clay-rich GT04/16,17 0,0214 571,9	Claystone	GT01/31,32	0,0206	4125,35	0,26	0,709	27,89	0,132	92,3-93,5
Lime-rich GT03/07,09 0,0286 6471,91 0,23 0,679 35,89 0,236 109,4-1 Lime-Marly GT01/42 0,0272 12842,47 0,24 1,579 34,32 0,269 212-2 Clay-rich GT04/16,17 0,0214 571,96 0,29 0,12 29,74 0,151 76,7-77 Section 9' Crenggara) Berat Jenis (MN/m3 Young Modulus (Mpa) Poison Ratio Tensile Strength opp (deg) Cp (Mpa) Kedalar (m) Claystone GT04/04 0,0207 1839,16 0,27 0,708 26,96 0,156 16,03-16 Limestone GT04/19,21 0,0285 356,54 0,23 0,673 36,88 0,23 93,25-5 Lime-rich GT03/07,09 0,0286 6471,91 0,23 0,679 35,89 0,236 109,4-11 Clay-rich GT04/16,17 0,0214 571,96 0,29 0,12 29,74 0,151 76,7-77 Section D (Barat Daya) Berat Jenis (MN/m3	Limestone	GT04/19,21	0,0285	356,54	0,23	0,673	36,88	0,233	93,25-96,6
Lime-Marly GT01/42 0,0272 12842,47 0,24 1,579 34,32 0,269 212-2 Clay-rich GT04/16,17 0,0214 571,96 0,29 0,12 29,74 0,151 76,7-77 Section 9' (Tenggara) Berat Jenis Young Modulus (MV/m3 Poison Ratio Tensile Strength op (deg) Cp (Mpa) Kedalar (m) Claystone GT04/04 0,0207 1839,16 0,27 0,708 26,96 0,156 16,03-16 Lime-Marly GT04/19,21 0,0285 356,54 0,23 0,673 36,88 0,233 93,25-9 Lime-Marly GT01/42 0,0272 12842,47 0,24 1,579 34,32 0,269 212-2 Lime-rich GT03/07,09 0,0286 6471,91 0,23 0,679 35,89 0,236 109,4111 Clay-rich GT01/31,32 0,0206 4125,35 0,26 0,709 27,89 0,132 92,3-9 Lime-rich GT03/07,09 0,0285 356,54	Lime-rich	GT03/07,09	0,0286	6471,91	0,23	0,679	35,89	0,236	109,4-112,4
Clay-rich GT04/16,17 0,0214 571,96 0,29 0,12 29,74 0,151 76,7-77 Section 9' (Tenggara) Berat Jenis (MN/m3 Young Modulus (Mpa) Poison Ratio Tensile Strength φp (deg) Cp (Mpa) Kedalar (m) Claystone GT04/04 0,0207 1839,16 0,27 0,708 26,96 0,156 16,03-16 Limestone GT04/19,21 0,0285 356,54 0,23 0,673 36,88 0,233 93,25-9 Lime-Marly GT01/42 0,0272 12842,47 0,24 1,579 34,32 0,269 212-2 Lime-rich GT03/07,09 0,0286 6471,91 0,23 0,679 35,89 0,236 109,4-11 Clay-rich GT01/16,17 0,0214 571,96 0,29 0,12 29,74 0,151 76,7-77 Section D (Barat Daya) Berat Jenis (MN/m3 Young Modulus (Mpa) Poison Tensile Ratio 9,0 Cp (deg) Cp (Mpa) Kedalar (m) Claystone GT01/	Lime-Marly	GT01/42	0,0272	12842,47	0,24	1,579	34,32	0,269	212-213
Section 9' (Tenggara) Berat Jenis (MN/m3 Young Modulus (Mpa) Poison Ratio Tensile Strength $_{\phi}p$ Cp (Mpa) Kedalar (m) Material Pendekatan 0,0207 1839,16 0,27 0,708 26,96 0,156 16,03-16 Limestone GT04/04 0,0207 1839,16 0,27 0,708 26,96 0,156 16,03-16 Limestone GT01/42 0,0272 12842,47 0,24 1,579 34,32 0,269 212-2 Lime-rich GT03/07,09 0,0286 6471,91 0,23 0,679 35,89 0,236 109,4-11 Clay-rich GT04/16,17 0,0214 571,96 0,29 0,12 29,74 0,151 76,7-77 Section D (Barat Daya) Berat Jenis Young Modulus Poison Ratio Tensile $_{\phi}p$ Cp Kedalar (Mpa) Imestone GT01/31,32 0,0206 4125,35 0,26 0,709 27,89 0,132 92,3-9 Lime-rich GT03/07,09 0,0286	Clay-rich	GT04/16,17	0,0214	571,96	0,29	0,12	29,74	0,151	76,7-77,45
Material Pendekatan (Mpa) And the state Claystone GT04/04 0,0207 1839,16 0,27 0,708 26,96 0,156 16,03-16 Limestone GT04/19,21 0,0285 356,54 0,23 0,673 36,88 0,233 93,25-6 Lime-Marly GT01/42 0,0272 12842,47 0,24 1,579 34,32 0,269 212-2 Lime-rich GT03/07,09 0,0286 6471,91 0,23 0,679 35,89 0,236 109,4-11 Clay-rich GT04/16,17 0,0214 571,96 0,29 0,12 29,74 0,151 76,7-77 Section D (Barat Daya) Berat Jenis (MN/m3 Young Modulus (Mpa) Poison Tensile Ratio φ Cp Kedalar (m) Claystone GT01/31,32 0,0206 4125,35 0,26 0,709 27,89 0,132 92,3-9 Lime-rich GT03/07,09 0,0286 6471,91 0,23 0,673 36,88 0,233 93,25-9 </td <td colspan="2">Section 9' (Tenggara)</td> <td>Berat Jenis (MN/m3</td> <td>Young Modulus</td> <td>Poison Ratio</td> <td>Tensile Strength</td> <td>_φp (deg)</td> <td>Cp (Mpa)</td> <td>Kedalaman (m)</td>	Section 9' (Tenggara)		Berat Jenis (MN/m3	Young Modulus	Poison Ratio	Tensile Strength	_φ p (deg)	Cp (Mpa)	Kedalaman (m)
Claystone GT04/04 0,0207 1839,16 0,27 0,708 26,96 0,156 16,03-16 Limestone GT04/19,21 0,0285 356,54 0,23 0,673 36,88 0,233 93,25-5 Lime-Marly GT01/42 0,0272 12842,47 0,24 1,579 34,32 0,269 212-2 Lime-rich GT03/07,09 0,0286 6471,91 0,23 0,679 35,89 0,236 109,4-11 Clay-rich GT04/16,17 0,0214 571,96 0,29 0,12 29,74 0,151 76,7-77 Section D (Barat Daya) Berat Jenis (MN/m3 Young Modulus (Mpa) Poison Ratio Tensile Strength $_{\phi p}$ Cp Kedalar (m) Claystone GT01/31,32 0,0206 4125,35 0,26 0,709 27,89 0,132 92,3-9 Lime-rich GT03/07,09 0,0286 6471,91 0,23 0,679 35,89 0,236 109,4-1 Lime-rich GT03/07,09 0,0286 6471,91<	Material	Pendekatan		(ivipa)					
Limestone GT04/19,21 0,0285 356,54 0,23 0,673 36,88 0,233 93,25-55 Lime-Marly GT01/42 0,0272 12842,47 0,24 1,579 34,32 0,269 212-2 Lime-rich GT03/07,09 0,0286 6471,91 0,23 0,679 35,89 0,236 109,4-11 Clay-rich GT04/16,17 0,0214 571,96 0,29 0,12 29,74 0,151 76,7-77 Section D (Barat Daya) Berat Jenis (MN/m3 Young Modulus (Mpa) Poison Tensile Ratio \$\$<	Claystone	GT04/04	0,0207	1839,16	0,27	0,708	26,96	0,156	16,03-16,45
Lime-Marly GT01/42 0,0272 12842,47 0,24 1,579 34,32 0,269 212-2 Lime-rich GT03/07,09 0,0286 6471,91 0,23 0,679 35,89 0,236 109,4-11 Clay-rich GT04/16,17 0,0214 571,96 0,29 0,12 29,74 0,151 76,7-77 Section D Barat Daya Berat Jenis (MN/m3 Young Modulus (Mpa) Poison Tensile Ratio op Cp (deg) Kedalar (Mpa) Claystone GT01/31,32 0,0206 4125,35 0,26 0,709 27,89 0,132 92,3-9 Limestone GT04/19,21 0,0285 356,54 0,23 0,673 36,88 0,233 93,25-5 Lime-rich GT03/07,09 0,0286 6471,91 0,23 0,679 35,89 0,236 109,4-1 Lime-rich GT03/07,09 0,0286 6471,91 0,23 0,679 35,89 0,236 109,4-1 Lime-Marly GT01/42 0,0272	Limestone	GT04/19,21	0,0285	356,54	0,23	0,673	36,88	0,233	93,25-96,6
Lime-rich GT03/07,09 0,0286 6471,91 0,23 0,679 35,89 0,236 109,4-11 Clay-rich GT04/16,17 0,0214 571,96 0,29 0,12 29,74 0,151 76,7-77 Section D (Barat Daya) Berat Jenis (MN/m3 Young Modulus (Mpa) Poison Tensile Ratio φp Cp (deg) Kedalar (Mpa) Claystone GT01/31,32 0,0206 4125,35 0,26 0,709 27,89 0,132 92,3-9 Limestone GT04/19,21 0,0285 356,54 0,23 0,679 35,89 0,236 109,4-1 Lime-rich GT03/07,09 0,0286 6471,91 0,23 0,679 35,89 0,236 109,4-1 Lime-rich GT03/07,09 0,0286 6471,91 0,23 0,679 35,89 0,236 109,4-1 Lime-Marly GT01/42 0,0272 12842,47 0,24 1,579 34,32 0,269 212-2 Clay-rich GT04/16,17 0,0214 571,96 <td>Lime-Marly</td> <td>GT01/42</td> <td>0,0272</td> <td>12842,47</td> <td>0,24</td> <td>1,579</td> <td>34,32</td> <td>0,269</td> <td>212-213</td>	Lime-Marly	GT01/42	0,0272	12842,47	0,24	1,579	34,32	0,269	212-213
Clay-rich GT04/16,17 0,0214 571,96 0,29 0,12 29,74 0,151 76,7-77 Section D (Barat Daya) Berat Jenis (MN/m3 Young Modulus (Mpa) Poison Tensile Ratio $_{\phi}p$ (deg) Cp (Mpa) Kedalar (m) Claystone GT01/31,32 0,0206 4125,35 0,26 0,709 27,89 0,132 92,3-9 Limestone GT04/19,21 0,0285 356,54 0,23 0,673 36,88 0,233 93,25-9 Lime-rich GT03/07,09 0,0286 6471,91 0,23 0,679 35,89 0,236 109,4-1 Lime-Marly GT01/42 0,0272 12842,47 0,24 1,579 34,32 0,269 212-2 Clay-rich GT04/16,17 0,0214 571,96 0,29 0,12 29,74 0,151 76,7-77 Section D' (Timur Laut) Berat Jenis (MN/m3 Young Modulus (Mpa) Poison Ratio Tensile Strength $_{\phi}p$ Cp (Meg) Cp (Mpa) Kedalar (m)	Lime-rich	GT03/07,09	0,0286	6471,91	0,23	0,679	35,89	0,236	109,4-112,4
Section D (Barat Daya) Berat Jenis (MN/m3 Young Modulus (Mpa) Poison Ratio Tensile Strength $_{\phi}p$ (deg) Cp (Mpa) Kedalar (m) Material Pendekatan 0,0206 4125,35 0,26 0,709 27,89 0,132 92,3-9 Limestone GT04/19,21 0,0285 356,54 0,23 0,673 36,88 0,233 93,25-9 Lime-rich GT03/07,09 0,0286 6471,91 0,23 0,679 35,89 0,236 109,4-1 Lime-Marly GT01/42 0,0272 12842,47 0,24 1,579 34,32 0,269 212-2 Clay-rich GT04/16,17 0,0214 571,96 0,29 0,12 29,74 0,151 76,7-77 Section D' (Timur Laut) Berat Jenis (MN/m3 Young Modulus (Mpa) Poison Ratio Tensile Strength $_{\phi}p$ Cp (Mpa) Kedalar (m)	Clay-rich	GT04/16,17	0,0214	571,96	0,29	0,12	29,74	0,151	76,7-77,45
Material Pendekatan (Mpa) 0 (Co)	Section D	(Barat Daya)	Berat Jenis (MN/m3	Jenis Young Modulus (Mpa)	Poison Ratio	Tensile Strength	_φ p (dea)	Cp (Mpa)	Kedalaman (m)
Claystone GT01/31,32 0,0206 4125,35 0,26 0,709 27,89 0,132 92,3-9 Limestone GT04/19,21 0,0285 356,54 0,23 0,673 36,88 0,233 93,25-5 Lime-rich GT03/07,09 0,0286 6471,91 0,23 0,679 35,89 0,236 109,4-1 Lime-Marly GT01/42 0,0272 12842,47 0,24 1,579 34,32 0,269 212-2 Clay-rich GT04/16,17 0,0214 571,96 0,29 0,12 29,74 0,151 76,7-77 Section D' (Timur Laut) Berat Jenis (MN/m3 Young Modulus (Mpa) Poison Ratio Tensile Strength \$	Material	Pendekatan	(5	(5)	(
Limestone GT04/19,21 0,0285 356,54 0,23 0,673 36,88 0,233 93,25-5 Lime-rich GT03/07,09 0,0286 6471,91 0,23 0,679 35,89 0,236 109,4-1 Lime-Marly GT01/42 0,0272 12842,47 0,24 1,579 34,32 0,269 212-2 Clay-rich GT04/16,17 0,0214 571,96 0,29 0,12 29,74 0,151 76,7-77 Section D' (Timur Laut) Berat Jenis (MN/m3 Young Modulus (Mpa) Poison Ratio Tensile Strength $_{\phi}p$ Cp Kedalar (m) Claystope GT04/04 0.0207 1839.16 0.27 0.708 26.96 0.156 16.03-16	Claystone	GT01/31,32	0,0206	4125,35	0,26	0,709	27,89	0,132	92,3-93,5
Lime-rich GT03/07,09 0,0286 6471,91 0,23 0,679 35,89 0,236 109,4-1 Lime-Marly GT01/42 0,0272 12842,47 0,24 1,579 34,32 0,269 212-2 Clay-rich GT04/16,17 0,0214 571,96 0,29 0,12 29,74 0,151 76,7-77 Section D' (Timur Laut) Berat Jenis (MN/m3 Young Modulus (Mpa) Poison Ratio Tensile Strength op (deg) Cp (Mpa) Kedalar (m) Claystone GT04/04 0.0207 1839.16 0.27 0.708 26.96 0.156 16.03-16	Limestone	GT04/19,21	0,0285	356,54	0,23	0,673	36,88	0,233	93,25-96,6
Lime-Marly GT01/42 0,0272 12842,47 0,24 1,579 34,32 0,269 212-2 Clay-rich GT04/16,17 0,0214 571,96 0,29 0,12 29,74 0,151 76,7-77 Section D' (Timur Laut) Berat Jenis (MN/m3 Young Modulus (Mpa) Poison Ratio Tensile Strength op (deg) Cp (Mpa) Kedalar (m) Claystope GT04/04 0.0207 1839.16 0.27 0.708 26.96 0.156 16.03-16	Lime-rich	GT03/07,09	0,0286	6471,91	0,23	0,679	35,89	0,236	109,4-112,4
Clay-rich GT04/16,17 0,0214 571,96 0,29 0,12 29,74 0,151 76,7-77 Section D' (Timur Laut) Berat Jenis (MN/m3 Young Modulus (Mpa) Poison Ratio Tensile Strength $_{\phi}p$ (deg) Cp (Mpa) Kedalar (m) Olavstope GT04/04 0.0207 1839.16 0.27 0.708 26.96 0.156 16.03-16	Lime-Marly	GT01/42	0,0272	12842,47	0,24	1,579	34,32	0,269	212-213
Section D' (Timur Laut)Berat Jenis (MN/m3Young Modulus (Mpa)Poison RatioTensile Strength $_{\phi p}$ (deg)Cp (Mpa)Kedalar (m)MaterialPendekatan0.02071839.160.270.70826.960.156.160.276	Clay-rich	GT04/16,17	0,0214	571,96	0,29	0,12	29,74	0,151	76,7-77,45
Material Pendekatan (M m) (Mpa) (M m)	Section D'	(Timur Laut)	Berat Jenis (MN/m3	Young Modulus	Poison Ratio	Tensile Strength	_φ p (deg)	Cp (Mpa)	Kedalaman (m)
Claystope GT04/04 0 0207 1839 16 0 27 0 708 26 96 0 156 16 03-16		Pendekatan	(111.0.110	(Mpa)	1 toto	Guongui	(409)	(mpa)	()
	Material		0.0207	1839.16	0,27	0,708	26,96	0,156	16,03-16,45
Limestone GT04/19,21 0,0285 356,54 0,23 0,673 36,88 0,233 93,25-5	Material Claystone	GT04/04	0,0207						
Lime-Marly GT01/42 0,0272 12842,47 0,24 1,579 34,32 0,269 212-2	Material Claystone Limestone	GT04/04 GT04/19,21	0,0207	356,54	0,23	0,673	36,88	0,233	93,25-96,6
Lime-rich GT03/07,09 0,0286 6471,91 0,23 0,679 35,89 0,236 109,4-11	Material Claystone Limestone Lime-Marly	GT04/04 GT04/19,21 GT01/42	0,0207 0,0285 0,0272	356,54 12842,47	0,23 0,24	0,673 1,579	36,88 34,32	0,233 0,269	93,25-96,6 212-213
Clay-rich GT04/16,17 0,0214 571,96 0,29 0,12 29,74 0,151 76,7-77	Material Claystone Limestone Lime-Marly Lime-rich	GT04/04 GT04/19,21 GT01/42 GT03/07,09	0,0285 0,0272 0,0286	356,54 12842,47 6471,91	0,23 0,24 0,23	0,673 1,579 0,679	36,88 34,32 35,89	0,233 0,269 0,236	93,25-96,6 212-213 109,4-112,4

Tabel 4.4 Input Parameter untuk Analisis Kestabilan Lereng Kuari C

Sumber : Lapi ITB, 2013.

Selain itu dilakukan pengujian tambahan pada lithologi batuan yang masuk pada model lereng yang akan disimulasikan dengan tujuan untuk medapatkan input parameter yang akan digunakan dalam analisis lereng yang dilakukan seperti pada Tabel 4.5.

		input i aranit	ter i engujian i	ambanc	411		
Lokasi	Litologi	Nat. Density (gr/cm3)	Sat. Density (gr/cm3)	C (KPa)	Phi	E (KPa)	v
	High Grade Limestone	2,46	2,51	200	24	11177.47	0,223089
Quarry A	Alternating Limestone-clay, limestone rich	2,2	2,34	150	26	8000	0,25
	Marly limestone	2,2	2,37	100	20	10000	0,3
	Alternating Limestone-clay, claystone rich	5 _{2,1}	2,45	125	22	7000	0,3
	Clay	1,9	2,19	100	20	5000	0,3
Quarry	Marly limestone	2,34	2,45	450	25,44	10000	0,3
С	Clay	1,9	2,15	30	21,8	5000	0,3
	High Grade Limestone	2,55	2,59	594,5	26,09	12992,99	0,21
Quarry	Alternating Limestone-clay, limestone rich	2,2	2,34	150	26	8000	0,25
В	Marly limestone	2,2	2,37	100	20	10000	0,3
	Alternating Limestone-clay, claystone rich	2,1	2,45	125	22	7000	0,3
	Clay	1,9	2,19	100	20	5000	0,3
	High Grade Limestone	2,32	2,41	53 5	23,06	9091,05	0,24
Quarry	Alternating Limestone-clay, limestone rich	2,2	2,34	150	26	8000	0,25
D	Marly limestone	2,2	2,37	100	20	10000	0,3
	Alternating Limestone-clay, claystone rich	2,1	2,45	125	22	7000	0,3
	Clay	1,9	2,19	100	20	5000	0,3

Tabel 4.5 Input Parameter Pengujian Tambahan

4.2.4 Muka Air Tanah

Muka air tanah atau biasa yang disebut dengan MAT merupakan salah satu faktor yang paling penting dalam analisis stabilitas lereng. Pengambilan data muka air tanah dilakukan pada lubang bor geoteknik yang telah dirubah dengan menggunakan filterpack pada annulus sumur untuk dilakukan uji akuifer, filterpack ini berupa pasir dan kerikil yang digunakan pada screen untuk membatasi antara top dan bottom lapisan akuifer. Adapun data yang didapat dari hasil pengukuran MAT dapat dilihat pada Tabel 4.6. 97.

		nasii reng	Jurulan MAT	
No	Luba ng Bor	Tanggal	Kedalaman MAT (meter)	Kedalaman Lubang Bor (meter)
1		9/7/2012	2,24	100
2		11/7/2012	31,4	120
3	OT 01	13/7/2012	33,66	140
4	GI-01	13/7/2012	24,92	160
5		20/7/2012	50,09	182
6		22/7/2012	43,58	200
7		27/8/2012	6,81	60
8	GT-02	29/8/2012	11,2	80
9		1/9/2012	12,17	100
10		3/9/2012	12,68	120
11		5/9/2012	12,68	120
12		2/9/2012	6,09	20
13	GT-03	3/9/2012	6,06	42
14		5/9/2012	6	60
15		4/9/2012	7,91	80
16		1/9/2012	12,15	100
17		7/9/2012	8,07	120
18		8/9/2012	6,85	120
19		1/10/2012	1,14	20
20		2/10/2012	5,07	40
21		3/10/2012	4,46	60
22		3/10/2012	1,11	80
23	GT-04	4/10/2012	28,32	100
24		5/10/2012	27,88	140
25		5/10/2012	28,32	160
26		6/10/2012	27,23	180
27		7/10/2012	27,28	200

Tabel 4.6 Hasil Pengukuran MAT

Sumber : Lapi ITB, 2013.

4.3 Analisis Bidang Diskontinu

Bidang diskontinu dalam massa batuan dapat membantu mudahnya proses penggalian serta keberadaan bidang diskontinu dalam massa batuan dapat membantu pencapaian fragmentasi yang diinginkan. Namun dari sisi geoteknik keberadaan bidang diskontinu ini akan mempengaruhi dari stabilitas lereng.

Berdasarkan hasil pengamatan dan pengukuran kondisi bidang diskontinu pada Kuari C yang meliputi jarak antar kekar serta longsoran yang terjadi di Kuari C, selanjutnya dilakukan korelasi antara jenis longsoran yang terjadi di lapangan dan juga analisis potensi ketidakmantapan lereng tambang. Secara grafis, hasil pengukuran orientasi bidang diskontinu diplot dengan menggunakan streonet dan hasilnya menunjukan bahwa kekar pada *scanline* A'P1 menunjukan bahwa berpotensi menghasilkan longsoran busur, kekar pada *scanline* CP1 menunjukan bahwa berpotensi menghasilkan longsoran busur, kekar pada *scanline* DP1 menunjukan bahwa berpotensi menghasilkan longsoran busur, kekar pada *scanline* DP1 menunjukan bahwa berpotensi menghasilkan longsoran busur.

Hasil analisis potensi longsoran ini akan digunakan sebagai acuan dalam melakukan simulasi analisis stabilitas lereng agar hasilnya lebih akurat dan mendekati keadaan sebenarnya, selain itu untuk hasil analisis potensi longsoran ini bisa digunakan dalam kegiatan pengubahan arah penambangan. Untuk lebih jelasnya mengenai analisis kinematik menggunakan stereonet dapat dilihat pada **Tabel 4.7.**

	Tabel 4.7 Analisis Kelongsoran										
Quarry	Kode	Contour Plot	Major Planes Plot	Rosette Plot	Pole Plot	Frekuensi	Potensi Longsoran				
A'	A'P1				The second	40	Busur				
С	CP1	a series and a series of the s				66	Baji, Busur				
D	DP1		a contraction of the second se			32	Busur				
D	DP2		a Same	USTAKA		48	Baji				

4.3 Analisis Stabilitas Lereng Tambang

Dalam analisis stabilitas lereng ini ditujukan untuk mendapatkan hasil analisis pemodelan lereng tunggal, analisis pemodelan lereng keseluruhan dan analisis balik yang akan dilakukan pada *section* C1 sampai dengan *section* C3 berupa geometri baru yaitu ketinggian dan kemiringan dari lereng yang aman, stabil dan optimal.

Pada Kuari C ditemui beberapa material yang dijumpai di Kuari C terlihat terkekarkan dan juga ditemui satuan batulempung serta hasil pengamatan longsoran di lapangan yang diasumsikan sebagai longsoran jenis busur. Oleh karena itu, analisis longsoran busur perlu dilakukan dalam kegiatan analisis stabilitas lereng ini.

Pemodelan lereng ini merupakan representasi alamiah lereng bukaan tambang yang akan dianalisis dengan cara memasukan faktor-faktor geometri, jenis batuan, tegangan insitu, pembebanan sehingga dapat mewakili dan menggambarkan keadaan lereng suatu bukaan tambang mendekati keadaan sebenarnya dilapangan. Pemodelan lereng dilakukan menggunakan *software slide 6.0* yang berbasis metode kesetimbangan batas.

Metode kesetimbangan batas atau LEM (*Limiting Equilbrium Methods*) dapat dinyatakan dengan persamaan keseimbangan dari salah satu atau beberapa blok yang diasumsikan tidak terdeformasi dan mengurangi gaya yang tidak diketahui, khususnya gaya geser yang bekerja pada permukaan longsor yang dipilih sebelumnya. Dalam metode ini lereng dibagi menjadi beberapa segmen dengan pusat gaya titik tertentu, kemudian menganalisis gaya yang bekerja pada lereng saat terjadi longsor (Irwandy, 2002).

4.3.1 Analisis Lereng Keseluruhan

Analisis kemantapan lereng keseluruhan bertujuan untuk menentukan tingkat kemantapan suatu lereng dengan membuat model pada sudut dan tinggi tertentu. Analisis kemantapan lereng ini menggunakan acuan input parameter seperti pada **Tabel 4.8.**

Tabel 4.8 Input Parameter Section C1 sampai C3									
SECTION		UNIT WEIGHT	FRICTION, φ	COHESION	KEDALAMAN				
MATERIAL	PENDEKATAN	(MN/m3)	deg	MPa					
Claystone	GT04/04	0,0207	26,96	0,156	16,03-16,45				
Lime-Marly	GT01/42	0,0272	34,32	0,269	212-213				

Sumber : Lapi, 2013

4.3.1.1 Analisis Stabilitas Lereng Section C1

Dari hasil analisis stabilitas lereng keseluruhan aktual dilakukan pada section

- C1, diperoleh hasil seperti pada Gambar 4.3
 - Elevasi lantai tambang : 118 mdpl
 - Ketinggian lereng : 61,158 m
 - Kemiringan lereng : 13°
 - Faktor keamanan : 1,605

Gambar 4.3 Hasil Pemodelan Lereng Aktual Section C1

4.3.1.2 Analisis Stabilitas Lereng Section C2

Dari hasil analisis stabilitas lereng keseluruhan aktual dilakukan pada section

C2, diperoleh hasil seperti pada Gambar 4.4

- Elevasi lantai tambang : 118 mdpl •
- Ketinggian lereng : 64,3 m
- Kemiringan lereng : 14°

: 2.06

Faktor keamanan

Gambar 4.4 Hasil Pemodelan Lereng Aktual Section C2

4.3.1.3 Analisis Stabilitas Lereng Section C3

Dari hasil analisis stabilitas lereng keseluruhan aktual dilakukan pada section

C3, diperoleh hasil seperti pada Gambar 4.5

- Elevasi lantai tambang : 118 mdpl .
- Ketinggian lereng : 34,18 m
- Kemiringan lereng : **17**°
- Faktor keamanan : 1,545

Hasil Pemodelan Lereng Aktual Section C2

4.3.2 Analisis Balik Lereng Tambang

Analisis balik yang dilakukan pada *section* C1 sampai dengan *section* C3 dilakukan untuk menganalisis longsoran, dalam analisis balik ini menggunakan input parameter awal berdasarkan data terdahulu (Lapi, 2012).

Analisis kelongsoran pada *section* C1 sampai dengan *section* C3 dilakukan pada *section* C2 karena pada *section* ini berada pada tengah bidang longsoran serta pada analisis awal mempunyai FK paling besar sehingga dianggap cukup mewakili untuk menganalisis permasalahan kelongsoran lereng Kuari C. Dalam ini longsoran ini ada beberapa tahapan diantaranya sebagai berikut.

Pertama, menganalisis kondisi lereng sebelum terjadi longsor (lereng desain) dan selanjutnya dilakukan analisis balik (*back analysis*) dengan input parameter lama. Melakukan analisis balik dengan input parameter bobot isi, kohesi dan sudut gesek dalam. Kemudian mensimulasikannya sebanyak 1000 kali dengan interval kohesi dan sudut gesek dalam, seperti **Tabel 4.9**.

	Tabel 4.9								
Interval Kohesi dan Sudut Gesek Dalam									
Motorial	Interval	Standar Deviasi	Interval	Standar Deviasi					
waterial	Kohesi	Kohesi	Sudut Gesek Dalam	Sudut Gesek Dalam					
Claystone	1147-2800	55.2	16 - 36	8.5					
Marly Limestone	70-170	41.2	32 - 8	8					

Hasil akhir dari analisis balik section C2 ini menghasikan nilai FK = 0,942

mendekati angka 1, dengan probabilitas kelongsoran 42,8% seperti pada Gambar

Dari hasil analisis balik *section* C2 ini berupa grafik hubungan antara kohesi dengan sudut gesek dalam dan grafik hubungan antara sudut gesek dalam dengan faktor keamanan untuk masing-masing litologi pada input parameter awal seperti pada gambar berikut ini.

Gambar 4.7 Grafik Hubungan Kohesi dengan FK (*Claystone*)

Pada grafik hubungan antara kohesi dengan FK untuk litologi *claystone* didapatkan persamaan linear y = 0,0007x + 0,8459, sehingga dapat disimpulkan bahwa kohesi *claystone* untuk mencapai FK = 1 adalah 129.3 kPa. (**Gambar 4.7**)

Gambar 4.8 Grafik Hubungan Sudut Gesek Dalam dengan FK (*Claystone*)

Pada grafik hubungan antara sudut gesek dalam dengan FK untuk litologi *claystone* didapatkan persamaan linear y = 0,0027x + 0,9493, sehingga dapat disimpulkan bahwa sudut gesek dalam *claystone* untuk mencapai FK = 1 adalah 25.04°. (**Gambar 4.8**)

Gambar 4.9 Grafik Hubungan Kohesi dengan FK (*Marly Limestone*)

Pada grafik hubungan antara kohesi dengan FK untuk litologi *limestone* didapatkan persamaan linear y = 0,0089x + 0,4893, sehingga dapat disimpulkan bahwa kohesi *Marly Limestone* untuk mencapai FK = 1 adalah 80.17 Kpa (**Gambar 4.9**)

Gambar 4.10 Grafik Hubungan Sudut Gesek Dalam dengan FK (Marly Limestone)

Pada grafik hubungan antara sudut gesek dalam dengan FK untuk litologi *limestone* didapatkan persamaan linear y = 0,0462x + 0,4791, sehingga dapat disimpulkan bahwa sudut gesek dalam *Marly Limestone* untuk mencapai FK = 1 adalah 11.23°. (**Gambar 4.10**) Berikut merupakan rekapitulasi parameter hasil analisis balik untuk litologi *claystone* dan litologi *marly Limestone* litologi yang disajikan dalam bentuk tabel seperti pada **Tabel 4.10**.

	Tabel 4.10								
	Rekapitulasi Input Parameter Hasil Analisis Balik								
		Pa	Parameter Baru						
1	Material	Kohesi (Kpa)	Sudut Gesek Dalam (0)						
	Claystone	129,3	25,04						
	Marly Limestone	80,17	11,23						

Kedua, melakukan kembali analisis stabilitas lereng keseluruhan untuk semua section menggunakan input parameter kohesi dan sudut gesek dalam yang baru seperti berikut ini.

- 1. Menganalisis kembali lereng desain *Section* C1 menggunakan input parameter baru, seperti pada **Gambar 4.11**
- Ketinggian lereng : 61,58 m
- Kemiringan lereng : 13°
- Faktor keamanan : 0,898

Gambar 4.11 Hasil Analisis Balik Section C1

- 2. Menganalisis kembali lereng desain *Section* C2 menggunakan input parameter baru, seperti pada **Gambar 4.12**
- Ketinggian lereng : 64,297 m
- Kemiringan lereng : 15 °
- Faktor keamanan : 0,943

Dari analisis stabilitas lereng keseluruhan section C1 dan section C2 menghasilkan nilai FK < 1,25, sehingga harus dilakukan desain kembali (*redesign*) dengan menggunakan geometri baru. Sedangkan Section C3 mempunyai nilai FK > 1,25 maka C3 tidak akan dilakukan redisgn.

4.3.3 Hasil Analisis Stabilitas Redesign Geometri Lereng

4.3.3.1 Analisis Stabilitas Redesign Geometri Lereng Tunggal

Dalam melakukan simulasi pada lereng tunggal hanya dilakukan pada litologi batulempung karena pada kondisi aktual lapisan batulempung ini mengalami longsor, didapatkan rekomendasi geometri lereng tunggal seperti pada Tabel 4.11.

Reka	Rekapitulasi Pemodelan Geometri Lereng Tunggal								
Motorial	Tinggi	Sudut	Faktor Keamanan						
Material	(m)	(°)	MAT 1	MAT 3	MAT 5				
		30	5,217	5,217	4,265				
	3	50	3,851	3,851	3,151				
		70	2,323	2,94	2,323				
	4	30	4,176	4,116	3,345				
Lempung		50	3,066	2,826	2,462				
		70	2,345	2,212	1,827				
	5	30	3,24	3,24	2,513				
		50	2,957	2,597	2,053				
		70	1,984	1,984	1,51				

Tabel 4.11

4.3.3.2 Analisis Stablitas Redesign Geometri Lereng Keseluruhan

Dari hasil pemodelan lereng keseluruhan didapatkan rekomendasi geometri lereng keseluruhan seperti pada **Tabel 4.12.**

	Rekapitulasi Pemodelan Geometri Lereng Keselurunan									
Kuari	Section	Tinggi	Sudut	Faktor Ke	amanan (FK)	kotorangan			
Nuari	Section	(m)	(°)	MAT aktual	MAT 3	MAT 5	Keterangan			
		61,158	13	1,096	1,028	0,898	Aktual			
		55,670	12	1,148	1,054	0,966	Optimasi			
	1	51,091	11	1,256	1,124	1,031	Optimasi			
		46,496	10	1,266	1,206	1,104	Optimasi			
		42,172	9	1,4	1,305	1,191	Optimasi			
С	5	37,265	8	1,594	1,417	1,299	Optimasi			
	2	64,297	14	1,168	1,055	0,943	Aktual			
4		57,793	13	1,212	1,128	0,993	Optimasi			
	2	53,192	12	1,299	1,216	1,076	Optimasi			
		48,808	11	1,405	1,251	1,149	Optimasi			
		44,712	10	1,615	1,467	1,313	Optimasi			

Tabel 4.12
Rekapitulasi Pemodelan Geometri Lereng Keseluruhar

Berikut merupakan hasil simulasi dan analisis stabilitas *redesign* lereng yang

AAT

direkomendasikan.

- 1. Pertama untuk section C1 seperti pada Gambar 4.14
- Ketinggian lereng : 37,265 m
- Kemiringan lereng : 8^o
- Faktor keamanan : 1,299
- 2. Kedua untuk section C2 seperti pada Gambar 4.15
- Ketinggian lereng : 44,712 m
- Kemiringan lereng : 10^o
- Faktor keamanan : 1,313

