BAB IV

HASIL DAN PEMBAHASAN

4.1 Pendahuluan

Berdasarkan dengan apa yang dipaparkan pada Bab sebelumnya, untuk menentukan taksiran model FEM dari data PDRB (variabel tak bebas) serta ekspor (variabel bebas) dan pengujian otokorelasi berdasarkan model FEM tersebut, maka hasil analisis dan pembahasannya akan dibahas pada Bab IV. Pengolahan data menggunakan *Eviews 7.0* dan *Minitab 16*.

4.2 Model FEM dengan Koefisien *Slope* Konstan dan Intersep Berbeda pada Individu

Akan membuat Persamaan (2.7) dengan menggunakan Persamaan (2.8), maka diperoleh persamaan model umum taksiran PDRB berdasarkan ekspor untuk intersep berbeda pada individu adalah sebagai berikut:

$$\begin{split} \hat{Y}_{it} = & 13984 + 229155D_{1t} + 264739D_{2t} + 23914D_{3t} - 2802D_{4t} + 66820D_{5t} \\ & -3855D_{6t} + 149150D_{7t} + 14840D_{8t} + 15207D_{9t} + 26035D_{10t} + 11070D_{11t} \\ & + 13965D_{12t} + 1225D_{13t} - 1876D_{14t} + 2489D_{15t} + 12077D_{16t} + 283479D_{17t} \\ & + 5913D_{18t} - 5202D_{19t} - 2204D_{20t} - 11711D_{21t} + 36399D_{22t} + 66186D_{23t} \\ & + 39326D24t + 3.46X_{1t} \end{split} \tag{4.1}$$

Dengan D adalah *dummy variable* untuk setiap provinsi yang disajikan pada Tabel 4.1.

Tabel 4.1 Dummy Variable untuk Setiap Provinsi

D_{1t}	1 =Jakarta 0 = lainnya	D_{9t}	1 = Sumatera Barat 0 = lainnya	D_{17t}	1 =Jawa Barat 0 = lainnya
D_{2t}	1 = Jawa Timur 0 = lainnya	D_{10t}	1 = Sulawesi Selatan 0 = lainnya	D_{18t}	1 = Yogyakarta 0 = lainnya
D_{3t}	1 = Kalimantan Timur 0 = lainnya	D_{11t}	1 = Kalimantan Barat 0 = lainnya	D_{19t}	1 = Sulawesi Tenggara 0 = lainnya
D_{4t}	1 = Papua 0 = lainnya	D_{12t}	1 = Lampung $0 = lainnya$	D_{20t}	1 = NTT $0 = lainnya$
D_{5t}	1 = Sumatera Utara 0 = lainnya	D_{13t}	1 = Sulawesi Utara 0 = lainnya	D_{21t}	1 = Kepulauan Riau 0 = lainnya
D_{6t}	1 = Kalimantan Selatan 0 = lainnya	D_{14t}	1 = Jambi 0 = lainnya	D_{22t}	1 = Sumatera Selatan 0 = lainnya
D_{7t}	1 = Jawa Tengah 0 = lainnya	D_{15t}	1 = Kalimantan Tengah 0 = lainnya	D_{23t}	1 = Banten 0 = lainnya
D_{8t}	$1 = \mathbf{Aceh}$ $0 = 1 \operatorname{lainnya}$	D_{16t}	1 = Bali 0 = lainnya	D_{24t}	1 = Riau 0 = lainnya

Sedangkan untuk model taksiran PDRB berdasarkan ekspor pada tiap provinsinya disajikan dalam Tabel 4.2

Tabel 4.2 Model Taksiran PDRB Berdasarkan Ekspor Pada Tiap Provinsi

NO	PROVINSI	MODEL
1.	DKI JAKARTA	$\hat{Y}_{1t} = 243138.34 + 3.46107 X$
2.	JAWA TIMUR	$\hat{Y}_{2t} = 278722.94 + 3.46107 X$
3.	KALIMANTAN TIMUR	$\hat{Y}_{3t} = 37897.16 + 3.46107 X$
4.	PAPUA	$\hat{Y}_{4t} = 11181.36 + 3.46107 X$
5.	SUMATERA UTARA	$\hat{Y}_{5t} = 80803.52 + 3.46107 X$
6.	KALIMANTAN SELATAN	$\hat{Y}_{6t} = 10128.85 + 3.46107 X$
7.	JAWA TENGAH	$\hat{Y}_{7t} = 163133.27 + 3.46107 X$
8.	ACEH	$\hat{Y}_{8t} = 28823.56 + 3.46107 X$
9.	SUMATERA BARAT	$\hat{Y}_{9t} = 29190.67 + 3.46107 X$
10.	SULAWESI SELATAN	$\hat{Y}_{10t} = 40018.61 + 3.46107 X$
11.	KALIMANTAN BARAT	$\hat{Y}_{11t} = 25053.39 + 3.46107 X$
12.	LAMPUNG	$\hat{Y}_{12t} = 27948.26 + 3.46107 X$
13.	SULAWESI UTARA	$\hat{Y}_{13t} = 15208.53 + 3.46107 X$
14.	JAMBI	$\hat{Y}_{14t} = 12107.86 + 3.46107 X$
15.	KALIMANTAN TENGAH	$\hat{Y}_{15t} = 16473.02 + 3.46107 X$
16.	BALI	$\hat{Y}_{16t} = 26060.89 + 3.46107 X$
17.	JAWA BARAT	$\hat{Y}_{17t} = 297462.64 + 3.46107 X$
18.	DI YOGYAKARTA	$\hat{Y}_{18t} = 19896.75 + 3.46107 X$
19.	SULAWESI TENGGARA	$\hat{Y}_{19t} = 8781.84 + 3.46107 X$
20.	NUSA TENGGARA TIMUR	$\hat{Y}_{20t} = 11779.83 + 3.46107 X$
21.	KEPULAUAN RIAU	$\hat{Y}_{21t} = 2272.53 + 3.46107 X$
22.	SUMATERA SELATAN	$\widehat{Y}_{22t} = 50382.35 + 3.46107 X$
23.	BANTEN	$\hat{Y}_{23t} = 80169.47 + 3.46107 X$
24.	RIAU	$\hat{Y}_{24t} = 53309.26 + 3.46107 X$
25.	NUSA TENGGARA BARAT	$\hat{Y}_{25t} = 13983.61 + 3.46107 X$

Adapun hasil pengujian dari model umum pada Persamaan (4.1) disajikan dalam Tabel 4.3 dan hasil pengolahannya tersaji pada Lampiran 3.

Tabel 4.3 Hasil Pengujian Model FEM dengan Koefisien *Slope* Konstan dan Intersep Berbeda pada Individu

R^2	0.968623
MSE	8.23 x 10 ¹⁰
F-statistic	276.5993
P-value	0.00000

Apabila taraf arti 0.05, maka nilai tersebut lebih besar dari p-value sehingga uji keberartiannya signifikan, yang artinya model FEM sangat berarti untuk digunakan menaksir PDRB berdasarkan ekspor. Nilai R^2 sebesar 0.968623 artinya besarnya pengaruh Ekspor terhadap PDRB adalah 96.86% sisanya dipengaruhi variabel lainnya yang tidak dianalisis.

Dari Tabel 4.2 diperoleh model FEM yang pertama untuk individu (DKI Jakarta) sebagai berikut:

$$\hat{Y}_{1t} = 243138.34 + 3.46107 X \tag{4.2}$$

Dari model (4.2) dapat diinterpretasikan setiap kenaikan ekspor sebesar satu juta US\$ maka PDRB akan naik sebesar 3.46107 milyar. Apabila nilai ekspor dianggap sama untuk semua provinsi maka nilai PDRB yang terbesar adalah Jawa Barat, sedangkan untuk PDRB yang terkecil adalah Kepulauan Riau.

4.3 Model FEM dengan Koefisien *Slope* Konstan dan Intersep Berbeda pada Waktu

Akan membuat Persamaan (2.11) dengan menggunakan Persamaan (2.8), maka diperoleh persamaan model umum taksiran PDRB berdasarkan ekspor untuk intersep berbeda pada waktu adalah sebagai berikut:

$$\hat{Y}_{it} = 48225 - 3102D_{i1} - 2900D_{i2} - 8244D_{i3} - 5121D_{i4} - 10478D_{i5} - 1030D_{i6}$$

$$-7928D_{i7} - 16150D_{i8} - 6439D_{i9} + 7.59X_{1t}$$

$$(4.3)$$

Dengan D adalah *Dummy Variable* untuk setiap tahun dari 2004-2013 yang disajikan pada Tabel 4.4.

Tabel 4.4 Dummy Variable untuk Setiap Tahun

D_{i1}	1 =2004 0 = lainnya	D_{i4}	1 = 2007 0 = lainnya	D_{i7}	1 = 2010 0 = lainnya
D_{i2}	1 = 2005 0 = lainnya	D_{i5}	1 = 2008 $0 = lainnya$	D_{i8}	1 = 2011 0 = lainnya
D_{i3}	1 = 2006 $0 = lainnya$	D_{i6}	1 = 2009 $0 = 1ainnya$	D_{i9}	1 = 2012 $0 = lainnya$

Sedangkan untuk model taksiran PDRB berdasarkan ekspor pada tiap tahunnya disajikan dalam Tabel 4.5.

Tabel 4.5 Model Taksiran PDRB Berdasarkan Ekspor Pada Tiap Waktu

NO	TAHUN	MODEL
1.	2004	$\hat{Y}_{i1} = 45122.97 + 7.5878 X$
2.	2005	$\hat{Y}_{i2} = 45324.33 + 7.5878 X$
3.	2006	$\hat{Y}_{i3} = 39980.95 + 7.5878 X$
4.	2007	$\hat{Y}_{i4} = 43103.83 + 7.5878 X$
5.	2008	$\hat{Y}_{i5} = 37746.77 + 7.5878 X$
6.	2009	$\hat{Y}_{i6} = 47194.09 + 7.5878 X$
7.	2010	$\hat{Y}_{i7} = 40296.19 + 7.5878 X$
8.	2011	$\hat{Y}_{i8} = 32074.57 + 7.5878 X$
9.	2012	$\hat{Y}_{i9} = 41785.25 + 7.5878 X$
10.	2013	$\hat{Y}_{i10} = 48224.55 + 7.5878 X$

Adapun hasil pengujian dari model umum pada Persamaan (4.3) disajikan dalam Tabel 4.6 dan hasil pengolahannya tersaji pada Lampiran 4.

Tabel 4.6 Hasil Pengujian Model FEM dengan Koefisien *Slope* Konstan dan Intersep Berbeda pada Waktu

\mathbb{R}^2	0.410281
MSE	1.55×10^{12}
F-statistic	16.62779
P-value	0.00000

Apabila taraf arti 0.05, maka nilai tersebut lebih besar dari p-value sehingga uji keberartiannya signifikan, yang artinya model FEM sangat berarti untuk digunakan menaksir PDRB berdasarkan ekspor. Nilai R^2 sebesar 0.410281 artinya besarnya pengaruh ekspor terhadap PDRB adalah 41.03% sisanya dipengaruhi variabel lainnya yang tidak dianalisis.

Dari Tabel 4.5 diperoleh model FEM yang pertama untuk waktu (tahun 2004) sebagai berikut:

$$\hat{Y}_{i1} = 45122.97 + 7,5878 X \tag{4.4}$$

Dari model (4.4) dapat diinterpretasikan setiap kenaikan ekspor sebesar satu juta US\$ maka PDRB akan naik sebesar 7.5878 milyar. Apabila nilai ekspor dianggap sama untuk semua provinsi maka nilai PDRB yang terbesar adalah tahun 2013, sedangkan untuk PDRB yang terkecil adalah tahun 2011. Hal ini dikarenakan harga komoditi primer yang menjadi andalan yaitu ekspor Indonesia merosot pada tahun 2011 sehingga mengakibatkan krisis ekonomi pada tahun tersebut (Glienmourinsie, 2011).

4.4 Model FEM dengan Koefisien *Slope* Konstan dan Intersep Berbeda pada Individu dan Waktu

Akan membuat Persamaan (2.14) dengan menggunakan Persamaan (2.8), maka diperoleh model umum taksiran PDRB berdasarkan ekspor untuk intersep berbeda pada individu dan waktu adalah sebagai berikut:

$$\begin{split} \hat{Y}_{it} &= 31595 + 271258D_{1t} + 277982D_{2t} + 46016D_{3t} - 853D_{4t} + 75753D_{5t} - 1239D_{6t} \\ &+ 152043D_{7t} + 15964D_{8t} + 15955D_{9t} + 26855D_{10t} + 10762D_{11t} + 15483D_{12t} \\ &+ 487D_{13t} - 1731D_{14t} + 1578D_{15t} + 11138D_{16t} + 283626D_{17t} + 4636D_{18t} \\ &- 5803D_{19t} - 3464D_{20t} - 584D_{21t} + 38544D_{22t} + 65843D_{23t} + 51544D24t \\ &- 27964D_{i1} - 25794D_{i2} - 24849D_{i3} - 21165D_{i4} - 19707D_{i5} - 14413D_{i6} \\ &- 13034D_{i7} - 11654D_{i8} - 4672D_{i9} + 2.27X_{1t} \end{split}$$

Dengan D adalah *Dummy Variable* untuk setiap provinsi dan tahun dari 2004-2013 yang disajikan pada Tabel 4.7.

Tabel 4.7 Dummy Variable untuk Setiap Provinsi dan Tahun

D_{1t}	1 =Jakarta 0 = lainnya	D_{13t}	1 = Sulawesi Utara 0 = lainnya	D_{i1}	1 = 2004 0 = lainnya
D_{2t}	1 = Jawa Timur 0 = lainnya	D_{14t}	1 = Jambi 0 = lainnya	D_{i2}	1 = 2005 0 = lainnya
D_{3t}	1 = Kalimantan Timur 0 = lainnya	D_{15t}	1 = Kalimantan Tengah 0 = lainnya	D_{i3}	1 = 2006 0 = lainnya
D_{4t}	1 = Papua 0 = lainnya	D_{16t}	1 = Bali 0 = lainnya	D_{i4}	1 = 2007 0 = lainnya
D_{5t}	1 = Sumatera Utara 0 = lainnya	D_{17t}	1 =Jawa Barat 0 = lainnya	D_{i5}	1 = 2008 0 = lainnya
D_{6t}	1 = Kalimantan Selatan 0 = lainnya	D_{18t}	1 = Yogyakarta 0 = lainnya	D_{i6}	1 = 2009 0 = lainnya
D_{7t}	1 = Jawa Tengah 0 = lainnya	D_{19t}	1 = Sulawesi Tenggara 0 = lainnya	D_{i7}	1 = 2010 0 = lainnya
D_{8t}	1 = Aceh 0 = lainnya	D_{20t}	1 = NTT 0 = lainnya	D_{i8}	1 = 2011 0 = lainnya
D_{9t}	1 = Sumatera Barat 0 = lainnya	D_{21t}	1 = Kepulauan Riau 0 = lainnya	D_{i9}	1 = 2012 $0 = lainnya$
D_{10t}	1 = Sulawesi Selatan 0 = lainnya	D_{22t}	1 = Sumatera Selatan 0 = lainnya		7
D_{11t}	1 = Kalimantan Barat 0 = lainnya	D_{23t}	1 = Banten 0 = lainnya		-
D_{12t}	1 = Lampung 0 = lainnya	D_{24t}	1 = Riau 0 = lainnya		3

Sedangkan untuk model taksiran PDRB berdasarkan ekspor pada tiap provinsi dan tahunnya disajikan dalam Lampiran 2. Adapun hasil pengujian dari model pada Persamaan (4.5) disajikan dalam Tabel 4.8 dan hasil pengolahannya tersaji pada Lampiran 5.

Tabel 4.8 Hasil Pengujian Model FEM dengan Koefisien *Slope* Konstan dan Intersep Berbeda pada Individu dan Waktu

R^2	0.974356
MSE	6.73×10^{10}
F-statistic	240.2619
P=value	0.0000

Apabila taraf arti 0.05, maka nilai tersebut lebih besar dari p-value sehingga uji keberartiannya signifikan, yang artinya model FEM sangat berarti untuk

digunakan menaksir PDRB berdasarkan ekspor. Nilai R^2 sebesar 0.974356 artinya besarnya pengaruh ekspor terhadap PDRB adalah 97.44% sisanya dipengaruhi variabel lainnya yang tidak dianalisis.

Dari Lampiran 2 diperoleh model FEM yang pertama untuk individu (DKI Jakarta tahun 2004) sebagai berikut:

$$\hat{Y}_{11} = 274888.52 + 2.267662 X \tag{4.6}$$

Dari model (4.6) dapat diinterpretasikan setiap kenaikan Ekspor sebesar satu juta US\$ maka PDRB akan naik sebesar 2.267662 milyar. Apabila nilai ekspor dianggap sama maka nilai PDRB pada model ketiga akan cenderung naik dari tahun 2004 – 2013 untuk 25 provinsi yang ada di Indonesia.

4.5 Pengujian Otokorelasi

Hasil pengujian otokorelasi menggunakan statistik uji Modifikasi Durbin Watson (MDW) untuk model pertama tersaji pada Lampiran 6, untuk model kedua tersaji pada Lampiran 7, dan untuk model ketiga tersaji pada Lampiran 8. Hasil pengujian otokorelasi dari ketiga model secara ringkas disajikan pada Tabel 4.9.

Tabel 4.9 Hasil Pengujian Otokorelasi

Model	δ_{Ti}^*	$\hat{\mathcal{S}}^2_{\delta}$	Statisitik uji Modifikasi Durbin Watson (ξ_{NT})	Kriteria Keputusan	Kesimpulan
Model Pertama	-19209418125 -29317423516 -: -850535463.8 -84370479.13	8.99 x 10 ¹⁹	-2.4279	-2.4279 < 0.064 Ho diterima	Tidak ada otokorelasi
Model Kedua	-108992893 -17324804932 : : -15703394327 -429676215.4	2.68 x 10 ²⁰	-2.2753	-2.2753 < 0.064 Ho diterima	Tidak ada otokorelasi
Model Ketiga	-20646237443 -23909305959 : -1926244066 -649419322.8	5.42 x 10 ¹⁹	-2.6524	-2.6524 < 0.064 Ho diterima	Tidak ada otokorelasi

Untuk mendapatkan nilai δ_{Ti}^* menggunakan Persamaan (2.30), nilai \hat{S}_{δ}^2 menggunakan Persamaan (2.31), nilai (ξ_{NT}) menggunakan Persamaan (2.29). Kemudian, dari Tabel 4.9 dapat dilihat bahwa ketiga model tidak mengandung otokorelasi artinya kita dapat memilih model yang terbaik dari ketiga model FEM.

4.6 Menentukan Model FEM Terbaik

Dalam menentukan model FEM yang terbaik digunakan nilai MSE yang terkecil, karena semakin kecil galat/gangguan maka model taksiran semakin mendekati model yang sebenarnya. Tabel ukuran kecocokan model disajikan dalam Tabel 4.10.

Tabel 4.10 Ukuran Kecocokan Model

Model	MSE	R ²
Model Pertama	3.68 x 10 ⁸	0.968623
Model Kedua	6.47 x 10 ⁹	0.410281
Model Ketiga	3.12 x 10 ⁸	0.974356

Dari Tabel 4.7 diatas dapat disimpulkan bahwa model FEM yang terbaik dengan nilai MSE yang terkecil adalah model FEM yang ketiga yaitu model FEM dengan koefisien *slope* konstan dan intersep berbeda pada individu dan waktu. Prosedur statistik memilih model yang terbaik berdasarkan nilai MSE yang terkecil. Akan tetapi, dari segi penerapan dalam bidang ekonomi ketiga model bisa saja digunakan karena tergantung kebutuhan.