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SAS MACROS FOR GENERATING DEPENDENT COMPETING RISKS DATA WITH
EXPONENTIALLY DISTRIBUTED MARGINAL CAUSE OF FAILURE
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YInstitute for Mathematical Research and Department of Mathematics, University Putra Malaysia,
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Univariate exponentially distribution data may be easily gencrated using most statistical software packages. For
instance, SAS uses an inverse transform method applied to a random variate from the uniform distribution. This is not as
simple as generating multivariate data with exponential marginal.

For generating multivariate dependent competing risks data with exponentially marginal distribution of each cause of
failure time, we can modify algorithm provided by London and Gennings (London, W. B. and C. Gennings, 1999.
Commun. in Stat. - Simula. and Comput. 28(2):487-500). This paper proposed to modify that algorithm and implement it
by using SAS macros.

Keywords: SAS macros, generating multivariate data, competing risks.

1. Introduction

In the competing risk setting, an individual is exposed to several risks at the same time, but eventual
failure of the individual is due to only one of these risks, which is called a cause of failure.

One formulation of the competing risk model is in terms of conceptual or latent failure times for each
failure type (Cox, 1959). It assumes that the competing risks are independent of each other. This
approach has been critized on the basis of unwarranted assumptions, lack of physical interpretation and
identifiability problems.

Alternatively, Prentice ef al. (1978) proposed cause-specific hazard rates, and showed that they were
the basic estimable quantities in the competing risks framework. The competing risk may be dependent
on each other.

Under this framework, suppose each failure of individual can be identified as one of p (p>1) possibly
dependent causes of failure. In other words, each individual is subject to p distinct risks referred to as
competing risks threatening its life. Associated with cause j, there is a nonnegative absolutely continuous
random variable T}; representing the lifetime of individual i when no other potential risks are present. So,
each individual has a latent vector T; = (Ty;, ..., Tp). Suppose that vector T; was distributed as
multivariate gamma with marginal exponential. Actually the termination time of an individual is defined
as the time to the first failure. Thus, lifetime of an individual 7 is given by T; = min{Ty, ..., T,,}. The
available information is usually given by the pair (T,,A;), where A, indicates the cause(s) of failure.
Censored data was specified by zero value of A,.

By assuming multivariate gamma distribution for p latent failure times with marginally exponential
distributed, we can set up a dependent competing risk model. For this, London and Gennings (1999)
proposed an algorithm to generate data with the desired distribution. Using multivariate normal data to
generate Wishart matrix, and then extracting the multivariate gamma vector as dependent latent for
competing risk data. Only the correlation structure of the multivariate normal data must be specified in
order to generate multivariate gamma vector with the desired mean and variance-covariance structure.

2. The Theory Of Simulation Of Multivariate Gamma Data With Exponential Marginals

2.1. Notation

Let the time points be denoted by ¢ for each time point, denote the censoring indicator by 4. We will
generate n individuals where each individual will contain p elements representing p types of failure time.
Therefore, the p elements may be dependent, aithough the data will be independently distributed across
individuals.
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104 Abdul Kudus and Noor Akma lbrahim

2.1.1 Generate One Individual

This theory is provided by London and Gennings (1999). We reformulate some notation for
simplification. Let’s proceed to generate the gth individual of multivariate gamma data, g = 1,...,n. Todo
so, we begin with muitivariate normal data, convert this to Wishart data, and then extract the multivariate
gamma vector, where the marginals will be exponential, a special case of the gamma. We know that the
diagonal elements of a Wishart matrix are distributed as multivariate gamma(x,t) (Johnson and Kotz,
1972). We begin by generating a Wishart matrix 4g (p ¥ p), Ag = XgXg ~ W, (r,Zg), where Xy is (r % P
vec(Xy) ~ N(O, I,®Zy), i.e. one row of X is Xg = (Xgin, ---» ¥gip) ~ No(0, Ig) for i=1,..., r rows (Johnson and
Wichern 1992) and

6glp
5 o=l 1 1)

&l g &r

. . . r
So the diagonal elements of A, are (agis ---» Agp) ~ multivariate gamma(x,t), where a,; = Zizlx;,.,. .

j=1,..., p. In the marginal, if k=1 and 1=, then (agiis ---» Ggpp) ~ exponential(A) (Rothschild and
Logothetis 1986). Now we must find the correct approach to use in setting up the multivariate normal
data in order to get k=1. We know that the chi-square distribution is a special case of the gamma, i.e., if y

2
~ gamma (K =3,T= -;-), then y ~ x> (Evans et al., 1993). Let r = 2, then z;(jj:-) ~ X35 J=L P

2
Therefore, Z;(—jf_—) ~ gamma(x =2=1r= %), j=1,...,p for r=2, i.e., v=2. Sor=2 will give us k=1

and therefore (a1, ---» Ggpp) ~ multivariate gamma(1l,t), and exponential(A) in the marginal. This vector
of multivariate gamma data represents one individual of p elements.

The (pxp) covariance matrix Zg' may be determined for the gth multivariate gamma vector starting
from the covariance matrix Z, of the original multivariate normal data. We know that for Wishart matrix
Ag,

Cov(ag,j,agk,) = I‘(G'g,-kO'g” + Gg,-,O'g,-k), i,j,k,l =1, ..., P
(Muirhead, 1982). Since we are only concerned with the diagonal elements of A,

CoW(agi, ag;) = NOgiiOgi + TG bj = 1. -0 P

Cov(a,,,.,., am.,)= ey, bj=lesp ¥))
Then
) e e
T,=2r0 P T 3
St Car

is the covariance matrix of the gth multivariate gamma random vector, where
Varla,, )= 2ra?, @
The correlation matrix R, (p x p) of this multivariate gamma vector can then be determined. Let the
(i,)th elements of R; be p;, where using (2) and (4),

2 2
Corla,ay) 20w _ %0 j=l..p (5)

Pyij = =
g,r JVar (agii )\/ﬁ (axii) \/; g ;ii \/; U;ii 0 i gii

If we decided that we'd like R, to have an exchangeable correlation structure, then for i#j, p=a, ic.,

1 oo -~ @
a | - a

R()=|. . . . (©6)
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So « is the value of every off-diagonal element of R, in the case of an exchangeable correlation structure.

We may now think of the ay;; as the #,; time points in a survival analysis, i=1,...,p, some of which are
censored and the balance of which are failures. The mean, variance, and for these gth individual
survival times are related to o, and the o,y as elements of % in equation (1). .This means, we can
generate fgii with the desired mean and variance by controlling the value Ggii, Ogij and o as will be shown
below.

If marginal distribution of tg 18 exponential(4), so its mean and variance are /A4 and (1/2)
respectively. This means, we only need to input «“mean” to calculate “variance” and use it to solve Og in
(4), where r=2.

Var\t ;i
Ggil = 4 (7)

To obtain oy from (5), with pg; = @ (off-diagonal elements), and Ogi = Ogjj (diagonal elements), we use
the following equation

Cgi = Ogii Jo (8)

Algorithm Generating one individual dependent compeling risk data.

Input mean, correlation (@) and number of failure type (p) for desired generated marginal exponential
data.

Calculate o and Ogj using equation (7) and (8) respectively.

Construct %, of equation (1)

Generate 1 observation from the 2p-normal multivariate distribution with mean 0 and covariance matrix
L,®Z,. Take the first p elements as first row of matrix X and the others as second row of X.

X e X
Construct Ag = Xg'Xg, where X, = gn &'y
Xgal Xpap
Extract diagonal elements of Ag. Let it's Tp = (g1t o tgpp) as sample from latent multivariate gamma

with marginal exponential.
Pick the minimum of Ty, as the observed failure time. 1f the position of its minimum is at jth element, then
its failure type is j, where j=1,...,p-
Generate binary number from Bernoulli distribution with ¢ probability of failure, where 100q is
percentage of censoring. If resulted generated binary number is zero, then the failure time is censored,
otherwise the individual is failure with jth failure type (keep result from step 7).

Notice that we employ the censoring independent from failure time data generation. After
generating failure time with its failure type in step 7, we proceed to decide whether it was censored or not
through generating binary number in step 8.

2.1.2 Generate n Individual

For generating n individual dependent competing risk data, we can repeat step 4 to 8 n times by using
input from step 1. The multivariate normal data generation in step 4 is employed just like the macro
MVN in SAS™, so that this macro can be developed in an effective way.

3. Implementation of The Theory and Application

The above algorithm is implemented in SAS Macros using the name depcrex which stands for “dependent
competing risk with marginal Exponential” with six input parameters and one output parameters. The sixX
input parameters are corr (correlation between failure time, o in equation (8)), means (mean of
exponential distribution, A), p (number of variate in multivariate gamma and also number of type of
failure), nos (number of observations to be generated), seed (starting seed value for the random number
generator), percent (censoring percentage), and the only output is scmprsk , the “sample competing
risk”.
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For example the syntax :
gesdepcrEx(corr=0.7,means=1 ’ p=3,seed=210369,nos=10000,percent=50,scnprsk=expo) H

is for generating dependent competing risk data with marginal exponential for correlation between failure
time o=0.7, mean of each exponential variate equal to 1, number of failure type was 3, 10000 number of
observations, using starting seed 210369, 50% of censoring and output data is assigned to expo.sd2.

Table 1. Summary of Generated Data

Failure Type
i 2 3
Observed (freq) 1589 1633 1688
Censored (freq) 1709 1712 1669
Total Censored (freq) 5090
A 09463 | 10878 | 1.1493
Mean 1.0567 09193 0.8701

Generated data summary in Table 1 showed that the censoring percentage which is closed to 50%, and
all maximum likelihood estimated sample mean are closed to 1. We can further explore the generated
data by employing cumulative incidence function (CIF) estimation. We use SAS macros comprisk from
Bergstralh (2000) for CIF estimation.
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Fig. 1. Cumulative Incidence Function for Three Failure Types

CIF for all three failure types have almost the same pattern. This figure confirmed the equality of
marginal exponential for all failure type as supposed to be.

4. Conclusion and Discussion

Based on maximum likelihood estimation result and CIF estimation results, we conclude that the
simulated dependent competing risk data have the means and distribution that were intended.

The exponential distribution was chosen because exponential models have been repeatedly used as
parametric models for failure time data. The example presented here made use of an exchangeable
correlation structure, but other structures could also be possible.
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