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MEDIAN SURVIVAL TIME OF WEIBULL DISTRIBUTION
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Abstrak

[n many applications of lifetime data analysis, it is important to perform inferences about the median of
the distribution function in situations of lifetime data modeling with skewed distribution. For lifetime
distributions where the median of the distribution function can be analytically calculated, its maximum
likelihood estimator is easily obtained from the invariance properties of the maximum likelihood
estimators. From the asymptotical normality of the maximum likelihood estimators, confidence
intervals can be obtained. However, these results might not be very accurate for small sample sizes
and/or large proportion of censored observations. Considering the Weibull distribution for the lifetime
data, we present and compare the accuracy of asymptotical confidence intervals with two confidence
intervals based on bootstrap simulation. The alternative methodology of confidence intervals for the
median of the Weibull distribution function is illustrated by using real data examples. The
nonparametric bootstrap procedure was implemented in the SAS® system which incorporated proc
nlp, proc surveyselect and proc iml in the SAS® macro environment.

Key word: Median, Weibull, Bootstrap
1. Introduction

In lifetime data analysis, we usually have a skewed distribution function. One of the skewed
distributions which plays a central role in the analysis of survival data is Weibull distribution,
introduced by W. Weibull in 1951 in the context of industrial reliability testing. Indeed, this
distribution is as central to the parametric analysis of survival data as the normal distribution
is in linear modeling. For the skewed distribution, a more appropriate and more tractable
summary of the location of the distribution is the median survival time [1].

Usually, we have interest in the estimation of the median survival time where the central
of tendency of the distribution function occurs.

Considering the Weibull distribution, we introduce asymptotical based inferences and
bootstrap based inferences for the median of the survival time. It is important to note that
usually, in the literature of lifetime data analysis, confidence intervals for the median of the
survival time are based on asymptotic arguments. A recent study about the Weibull
distribution, related to this work, is presented in [2].

The paper is organized as follows: in Section 2 we introduce some characteristics of the
Weibull distribution; in Section 3 we introduce the likelihood function in the presence of
censored observations; in Section 4 we have some comparisons between asymptotical based
inferences and bootstrap simulation based inferences for the median survival time; in Section
5 we give illustrative example with real data set. A SAS macro to obtain asymptotical and
boot strap confidence intervals is briefly discussed in Section 6.

2. The Weibull distribution

Let T be a random variable representing the lifetime of a unit or patient with a Weibull
distribution with hazard function given by

()= Ap, 0<t <o ¢

This function depends on two parameters A and y which are both greater than zero. In the
particular case where y = 1, the hazard function takes a constant value 4, and the survival
times have an exponential distribution. For other value of  the hazard function increases or
decreases monotonically, that is, it does not change direction. The shape of the hazard
function depends critically on the value of y and so yis known as the shape parameter, while
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the parameter A is a scale parameter. The general form of this hazard function for different
values of v is shown in fig. 1. For this particular choice of hazard function, the survivor
function [3] is given by

S¢t)= exp{— ]" /lru"’du} = exp(— }.t’) )
The corresponding probability density function is then

£)= an"" expl-207) (3)

for 0 < t < oo, which is the density of a random variable that has a Weibull distribution with
scale parameter A and shape parameter . The right-hand tail of this distribution is longer than
the left-hand one, and so the distribution is positively skewed.

hin
2

o 1 2 3

Fig. 1. Weibull hazard function for A =1 and y = 0.5, 1.0,1.5and 3.0

The mean, or expected value, of a random variable T that has Weibull distribution is as
follows

E(T)=x"r{y" +1) 4)

where /{x) is the gamma function defined by
rx)= T[u‘“‘e"‘du )

However, since the Weibull distribution is skewed, a more appropriate and more tractable
summary of the location of the distribution is the median survival time. This is the value #(50)
such that S{#(50)} = 0.5, so that

expl Al(50)} }= 0.5

and
1(50)= B log 2]% (6)

Since the Weibull hazard function can take a variety of forms depending on the value of
the shape parameter y, appropriate summary statistics can be easily obtained. This distribution
is widely used in the parametric analysis of survival data.

3. The likelihood function in the presence of right censored data

Let T°, ..., T be the true lifetimes of a sample of size n, assumed to be independent

identically distributed with a Weibull distribution with hazard function (1). Assuming that the
observations are subject to arbitrary right censoring, the period of follow-up for the ith
individual is limited to a value C.. Then, the observed survival time of the ith individual is
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given by t; = min(7°, C}).

Define & such that & = 0 if T° 2 C: (a censored observation) and & = 1 if T’ < C; (an
observed death or failure of some kind). The likelihood function for A and yis given by

L 10)=TT o exple ) ke 20 )
The corresponding log-likelihood function is given by
1, 711)=3 8, log(a7)+ (r -3, logt, - A3t (7

Maximum likelihood estimators for A and y are obtained by differentiating this function with
respect to A and y, equating the derivative to zero and solve these equations

1$6-3r=0
A = 8
1 ; , ®
—y-ZtZ +).8,logt, = A3 1] logt, =0

i=l i=l i=l

The maximum likelihood estimator for the median survival time #50) is obtained from the
maximum likelihood estimators 4 and 7, that is

@m{%mq” ©)

Asymptotical confidence intervals for #(50) = g(4,7) are obtained using the delta method, that
is, #(50)~N[t(50), var(t(50))]. Under the delta method, the asymptotical variance of 1(50)= g(}:, }7)
is given by

varleli 7] [% gli, y):] Var(i)+[a—a]: gli, 7)] Var(y) (10

where

A==

2 oh7)-- L

g
oy b4

a=d =
and the asymptotical variances and covariance for J and 7 are obtained from the inverse of
the Fisher information matrix for A4 and y.

Alternatively to the asymptotical based confidence intervals for #(50), we could use
nonparametric bootstrap simulation methods by resampling with replacement the available

data (ti, &), ..., (I, 6s) [4].
4, Bootstrap confidence intervals for #(50)

In this section we introduce the steps for the construction of bootstrap confidence intervals for
1(50), the median of the Weibull distribution function. The advantage of the bootstrap is that
the joint distribution of the maximum likelihood estimators is not assumed to be normal,
unlike in the delta method.

We consider two bootstrap methods to construct the confidence intervals for #(50): the p-
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Bootstrap method suggested by Efron [5], based on the percentiles of the bootstrap
distribution, and the z-Bootstrap method suggested by Hall [6]. Other existing alternatives for
the p-Bootstrap and the #-Bootstrap, not considered in this paper, also could be used to con-
struct confidence intervals. For a complete review of available approaches to bootstrap
confidence intervals see [5] and [7].

Let U = (¢,8) be the observed data where ¢ = (#, ..., 1,) is the vector of lifetime data and 6=
(6, ..., 6n) is the vector of indicators of censored observations.

4.1. p-Bootstrap

[a] Random select, with replacement from U, a bootstrap sample (¢ 280 )s wens (858,

[b] From the bootstrap sample in [a], find the maximum likelihood estimates of 1(50), denoted
by t(50)

[c] Repeat steps [a] and [ b}, B times.

[d] From t(éO). = (t(§0);,) sr(go);z) s...sr(§0);B)J find a 100x(1 — @)% bootstrap confidence
interval given by (1(30);,,),t(§0);42,) where g1 = [(«/2)B] and ¢ =B — q1-

4.2, -Bootstrap

[a’]JRandom select, with replacement from U, a bootstrap sample (t/,4), ..., (t,6).

[b’]From the bootstrap sample in [a'], find the maximum likelihood estimates of #(50),
denoted by 1(50)'.

[c’]Repeat steps [a’] and [b’], B times.

[d’]Same as in [d] above, find T* = (7}, ..., T,,), where T, < T fori,j=1,.., B;i#jgiven

H— "
(t(éO),. - 1(50))
by I/ == (11) where
o-i

«(50) is the maximum likelihood estimates for (50) and &' is the standard error of (50), .
Since ¢ (i = 1, ..., B) can be calculated directly by the inverse of the Fisher information
matrix, it is not necessary to resample from the bootstrap sample [4] and [8].

[e’]From T " we find a 100 x (1 — @)% bootstrap confidence interval for #(50) given by
(r(ioy 6T, 31(50) &T(;,J (12) where ¢ and

¢, are defined in [d] and 6= Var(t(§0)) , (and #(50) and & are calculated from the original

lifetime data).
5. An example with a real data set

As an example, consider the sample of strike lengths in days given in [9]. The data pertain to
U.S. manufacturing industries for the period 1968 through 1976 and cover official strikes
involving 1,000 workers or more. The complete and censored data sets considered are as in
[10] and [2]. The restriction is applied to only strikes beginning in June of each year for a total
number of 62 observations, which 12 of them are censored due to duration greater than or
equal to 80 days. In Tables 1 and 2, we have 95% asymptotical and bootstrap confidence
interval for parameters #(50) and . The empirical bootstrap distributions are presented in
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Fig.2

Table 1. Maximum likelihood estimates and asymptotical confidence intervals.

Parameter MLE SE 95% Confidence

Interval
t(50) 27.6356 4.7158 (18.3927;36.8785)
y 0.8857 0.1061 (0.6777; 1.0936)

To check if the normality of the empirical bootstrap distributions for #50) and y are
appropriate, we have in Fi ig. 2(bottom row), their normal quantlle -quantile plots. If we have
normality, then the points in these plots should lie roughly on a straight line. From these
plots, we clearly observe that the normality assumption is not appropriate, which justifies the
use of bootstrap methods to construct confidence intervals for the parameters.

Table 2. Bootstrap estimates, p-Bootstrap and t-Bootstrap confidence intervals.

Parameter MLE? SE? 95% Confidence Interval
p-Bootstrap t-Bootstrap
t(50) 27.9261 3.5120 (21.6245;35.1736) (22.7818;33.7460)
Y 0.8949 0.0763 (0.7555;1.0616) (0.7696;1.0031)
. _IIIIIIlI.. .
15 30 35 40 45 1t2
] s Q :: 4 ipo
-2 0 2 ° -2 0 2
Theoreticat Quantile Theoreticat Quantile

Fig. 2. (Top row) Distribution of B = 1000 bootstrap replications for parameter t(50) and
y along with their 95% confidence intervals, where (—): asymptotic confidence
interval, (...): p-Bootstrap and (-.-.): t-Bootstrap confidence intervals, (Bottom
row) quantile-quantile plots for t(50) and y.

From the obtained results of Table 3, we observed that the obtained bootstrap confidence
intervals are more accurate than the obtained asymptotical intervals, even in the situation of a
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large sample size (n = 62) and few censored observations.

Table 3. Range (R) and asymmetry index (F) for the 95% CI for 1(50) and y

Parameter
Interval 1(50) y
R F R F
Asymptotical 18.4858 1.0000 | 0.4158 1.0000
p-Bootstrap ~ 13.5492  1.2540 | 0.3062 - 1.3515
t-Bootstrap 10.9641 1.2589 | 0.2335 1.0120

6. A SAS macro for asymptotic and bootstrap confidence intervals

A SAS macro has been written to implement the asymptotic and bootstrap confidence
intervals presented in numerical examples, Section 5. In the macro code, we do the
resampling using proc surveyselect and the maximum likelihood estimates for #(50) and yare
obtained via the proc nlp using the trust-region method [11]. From the B bootstrap estimates
for #(50), 3 Var(#(50)) and Var(»), SAS/IML is used to provide asymptotic and bootstrap
confidence intervals estimates. The SAS macro, along with instructions on its use, is
provided in appendix.

7. Conclusions

Considering the Weibull distribution, we presented two bootstrap based methods to construct
confidence intervals for the median of survival time. We have showed in numerical examples
that the nonparametric bootstrap can be quite useful. Even for large sample sizes and small
proportion of censored data, we observed better inference results considering bootstrap based
methods in comparison to the usual asymptotical inference based on the normality of the
maximum likelihood estimators. As pointed in [2], the difference between asymptotic
confidence interval and the bootstrap confidence interval might be due to the fact that the
variance obtained by the delta method depends on Taylor series approximation where the
error terms are ignored. These terms are part of the variances computed by bootstrapping.

The bootstrap can also be used to obtain confidence intervals for other functions of the
parameters. For example, we could obtain confidence intervals for the mean of the Weibull
distribution.

The nonparametric bootstrap procedure was implemented in the SAS system and the
macro code is readily available in the appendix.
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Appendix. SAS Macro for asymptotic and bootstrap confidence interval

data strike;

input time delta @@;

datalines;
7 1 9 1 13 1 14 1 26 1 29 1
52 1 80 0 9 1 37 1 41 1 49 1
52 1 80 0 3 1 17 1 19 1 28 1
72 1 80 0 80 0 80 0 80 0 80 0
80 0 15 1 61 i 80 0 2 1 25 1
80 0 3 1 10 1 1 1 2 1 2 1
3 i 3 1 4 1 8 1 11 1 22 1
23 1 27 1 32 1 33 1 35 1 43 1
43 1 44 1 80 0 5 1 49 i 2 1
12 1 12 1 21 1 21 1 27 1 38 1
42 1 80 0;

%macro names(in=,start=1,end=);
%do i=&start %to &end;
&in&i
%end;
%mend names;
/* Maximum Likelihood Estimation from Original Survival Times */

proc nlp data = strike tech = tr cov=2 vardef=n pcov noprint

98



outest=mles(keep=t50 gamma _type_
where=(_type_ in ("PARMS","COV2: H","LOWERBD")));
max loglik;
parms t50 = 27.27310, gamma = 0.921;
bounds t50 > 0, gamma > 0;
lambda = log(2)/(t50**gamma);
term1 = log(lambda)+log(gamma)+(gamma-1)*log(time);
term2 = -lambda*time**gamma;
loglik = delta*term 1+term2;
run;
%macro takesampleandestimate(repetition=,inpt=,seed=,size=);
proc surveyselect data = &inpt
out = outp
seed = &seed
method = urs
n = &size noprint;
run;
proc nlp data = outp tech=tr cov=2
vardef=n pcov noprint inest=mles
outest=aux&repetition(keep=t50 gamma _type
where=(_type_in ("PARMS","COV2: H")));
max loglik;
parms t50, gamma;
lambda = log(2)/(t50**gamma);,
term1 = log(lambda)+log(gamma)+(gamma-1)*log(time);
term?2 = -lambda*time**gamma,;
loglik = delta*term1+term2;
run;
%mend takesampleandestimate;
%macro bootstrap(rept=, alpha=, inpt=, sizesample=, seed=);
%do i = 1 %to &rept;
%takesampleandestimate(repetition=&i,
inpt=&inpt,
seed=&seed,
size=&sizesample);
%put simulation &i from &rept;
%let seed = Yoeval(&seed+1);
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data auxI(drop=_type_);
set Y%names(in=aux,start=1,end=&rept);
run;
proc iml; reset noname;
aux = &rept;
namesc = {"MLE" "SE" "LOWER BOUND" "UPPER BOUND"};
namescboot = {"BootEst" "BootSE" "LOWER BOUND" "UPPER |
~ BOUND'}; |
namesr = {"t50", "gamma"};
namers = {"range" "shape"};
start order(inpt);
nc = ncol(inpt);
aux1 = inpt;
do i=1 to nc;
aux2 = rank(aux1[,i});
aux1[aux2,i] = inpt[,i];
end; .
return(aux1);
finish order;
use auxl; read all into mat;
boots = shape(mat,aux,6)[,{123 6 5}];
sb = sqrt(boots[,{3 4}1);
use mles; read all into mles;
mle = mles[{1 2}];
se = sqrt(mles[{5 8}1);
gl = aux*(&alpha/2);
g2 =aux - ql;
pct =mle || se || (mle-probit(1-&alpha/2)*se)|| (mle-probit(&alpha/2)*se);
print "Asymptotic Confidence Interval 100*(1-
&alpha/2)%",
pet[colname=namesc rowname=namesr {=.4];
range = pct[,4] - pct[,3];
shape = (pct[,4] - mle)/(mle - pct[,3]);

print(rangeHshape) [colname=namers rowname=namesr {=.4]; bootpar =
boots[,{1 2}];

bootest = t(bootpar[:,1);
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n = nrow(boots);
bootcorr = bootpar-shape(bootparf:,],n,2);
bootse = t(sqrt(bootcorr[##,]/(n-1)));

pct = bootest||bootsef|t(order(boots[,{1 2}D[q1//q2,]); print "p-Bootstrap
Confidence Interval 100*(1-

alpha/2)%",
pct[colname=namescboot rowname=namesr f=.4};range = pct[,4] - pet[,3];
shape = (pct[,4] - mle)/(mle - pct[,3]);
print (rangel|shape)[colname=namers rowname=namesr
=.4];
T =t(order((boots[,{1 2}]
-shape(mle,aux,2))/sb)[q1//q2,]);

pct = bootest||bootse(|(mle-T{,2]#se)||(mle-T[,1]#se);  print "t-Bootstrap
Confidence Interval 100*(1

-alpha/2)%",
pct[colname=namescboot rowname=namesr f=.4]; range = pct[,4] - pct[,3];
shape = (pct[,4] - mle)/(mle - pct[,3]);
print (shape||shape)[colname=namers rowname=namesr
=.4};
/* sending out bootpar */

create databoot from bootpar[colname={'t50' 'gamma'}]; append from
bootpar;

quit;
proc gchart data=databoot;
vbar t50 / midpoints = 15 TO 40 BY 2.5;
vbar gamma/ midpoints = 0.55 To 1.55 BY 0.1;
run;
proc export data=databoot
outfile='c:\bootresult.xls'
dbms=excel
replace;
run;
%mend bootstrap;
/* Run the macro */
%bootstrap(rept=1000,alpha=0.05,inpt=strike,sizesample=62,seed=123);
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