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Abstract

In the time-to-event analysis, particularly for
competing risk data analysis, it may be desirable to
dichotomize continuous predictor variable(s) since
the functional form between the predictor variable
and competing risk survival time data need not be
assumed. There may be thresholds for the predictor
variables and the statistical inference might be more
robust when the predictor variables are dichotomized.
By transforming a continuous predictor variable into
a categorical variable, usually binary, we will come
up with a more interpretable model. Maximum
Gray’s statistic method is considered for the cutoff
point determination in this paper. This statistic is
useful for comparing cumulative incidence function
for the main cause of interest, therefore we will have
two groups with different subdistribution survival
times.

Introduction

In the applied statistics fields, it may be desirable for
the independent continuous variables in descriptive,
univariate, or multivariate analysis to be viewed as
categorical variables. The reasons to dichotomize
such variables are because the functional form
between the independent and dependent variables
need not be assumed and there may be thresholds for
the independent variables.

Association between independent variable and time
to event of a particular type in competing risk setting
may be inferred via relative risks. For a continuous
independent variable the relative risk will indicate the
magnitude of increased risk of the independent
variable.  This interpretation assumes that the
functional form between independent and dependent
variables is known. However, for many independent

variables, its functional relationship to time of event
of a particular type is unknown.

If the continuous independent variable s
dichotomized, a general functional relationship can
be represented depending on the number of
categories selected for that variable. In a medical
setup, the results from a study which dichotomizes a
continuous independent variable will show the
relative risk by comparing the risk of getting a
particular type of event in specific categorical levels
of the independent variable with the risk of getting a
particular type of event for a selected reference
category. This interpretation may be easier to
comprehend by the physician and patient.

Some independent variables might have thresholds in
predicting the outcomes. That is, the relationship
between an independent variable and an outcome
variable might not be represented adequately by a
continuous function. Dichotomizing a continuous
independent variable with thresholds might allow us
to investigate the association between independent
variables and the outcome with more validity.

Thus, for the above reasons, many researchers have
dichotomized continuous variables in many areas of
applied statistics studies. However, "What is the
correct method of dichotomization?” is a critical
question, because there are so many different ways to
determine cutoff point for continuous independent
variable dichotomization. Some cutoff points are
decided on the basis of prior biological or
physiological knowledge, and others are based on
outcome-dependent methods. There is no clear rule to
specify which dichotomization is the best and results
of analysis from a variety of dichotomizations may
be different.



Most researchers prefer to use prior knowledge for
deciding on cutoff points. These cutoff points may
be obtained from biological observations, clinical
studies, or physicians' experiences. However, there
are some problems in using prior knowledge. The
first problem is that people do not always know
whether the thresholds or reference ranges are from
scientific sources or not. The second problem is that
these thresholds cannot always be applied to people
with different characteristics. Therefore, when a
dichotomization is used in a study, the existing
criteria for its original selection might not be
appropriate for the new and different situations.
Problem in using prior knowledge to determine the
appropriate dichotomization in some specific areas of
applied statistics is that many risk factors have not
been studied, so the cutoff point (or cutoff points) for
them are not clear.

We propose the use of outcome-oriented cutoff points
in competing risk data analysis as have been done for
survival data by Mandrekar er al. [4]. Statistical
methods applied to decide on cutoft points are based
on the characteristic of the time to event of main
interest. We use two-sample test from Gray [2] to
find an optimal cutoff point which does not require
the development of a regression model as studied by
Ibrahim et al. [3].

Outcome-Oriented Cutoff Point Determination in
Competing Risk Data Analysis

The method of cutoff point determination based on
Gray’s test statistic for comparing the cumulative
incidence is not straight forward due to the statistical
issues made complicated by the presence of multiple
events. Here, each subject may fail due to one of
several possible causes called competing risks. A
competing risk can be defined as an event whose
occurrence precludes the occurrence of other events
under examination. Some examples of competing
risks is cause-specific mortality, such as death from
heart disease and death from cancer, where deaths
from other causes (for example old age) are the
competing risks.

Interest is often on estimating the rate of occurrence
of the competing risks and comparing these rates
between groups of subject and modeling the effect of
some other factors on the rate of the competing risks.
Here, we will focus our attention on comparing
probabilities of a specific event in two distinct groups
through Gray’s test.

Competing Risks Data

Consider competing risks data where each subject
may fail due to one of J (J = 2) causes. Occurrence of
one event precludes observation of the other events
(it is assumed that subject can fail only from one
cause).

The latent failure time approach is one of the ways to
describe competing risks data. Here, competing risks
are represented by a set of positive random variables
Xi,....X; with X; being a potential (unobservable) time
to occurrence of the /" competing risk. We observe
the time at which each subject fails from any cause, T
= min(Xj,....X;), and an indicator & indicating which
of the J risks caused the failure, i.e., 0=jif T=X,

A fundamental parameter in competing risks data
analysis is the cumulative incidence function which is
defined as follows:

F(1)=P(T<1.5=))= [5, (n)a,

j=1...J (1)

(u)du,

where S is the overall survival function of T, that is,
SH{t) = P(T > 1) and ¢« is the cause specific hazard
rate for risk j, defined by

P<T<t+At,6=j1T>1)

()=1i :
@,(r)=lim ”
j=1...J )

Note that the value of F(r) depends not only on the
rate at which the specific cause of interest is
occurring, but also on the rates at which all the
competing risks occur. Fi(f) is called a
"subdistribution” function because it is not a true
distribution function due to its properties: it is non-
decreasing, F(0) = 0 and Fy(eo) = P(0=j) < 1. These
curves have a straightforward interpretation. They are
probabilities of experiencing death from the jth cause
in the setting where competing risks are
acknowledged to exist.

For further development, it is convenient to introduce
the counting process notation. A formal and rigorous
survey of counting processes and their applications
can be found in [1]. Here, we will introduce the
notation and approaches to be used in the rest of the

paper.

Define the process Y'(r) = I(T, > 1) as an indicator of i
being at risk just before time r. The total number of




subjects at risk at time ¢ is ¥ (t) =L:] Y'(t), where i

= 1,..., n. Consider a counting process:

Ne)=1(T, <1,8 = )) 3)

Note that Nj- () isa step function, which is zero until
[ dies from cause ; and then Jumps to one. The
process N, (t):Z;‘":1 N ] (t) is also a counting process

which simply counts the number of failures of type j
in the sample at or prior to time r. Throughout, the
subscript replaced by "e" will denote summation over
that index. After adopting this notation, the total

number of failures by time  is

M= N0).

j=l

In the counting process notation, the data (T}, §,), i =
1,..., n, are represented by {Y'(), N ()}i=1,.,n,j

= 1,..., J. Based on these data we can estimate some
quantities in the competing risk data analysis.

Gray’s Test for Comparing Cumulative Incidence

Suppose there are K independent groups of subjects,
where k" group consists of ny subjects and

n= Z}ilnk - Each subject may fail due to one of J

(J = 2) competing causes. Indeed, it is enough to
consider the case where there are only two types of
failure. This does not place any restriction on the
generality of the results, since when there are more
than two types of failure, all types other than the type
of interest can be combined into one "other" category
while analyzing the event of interest. The failure type
of special interest is taken to be type 1. In general,
data will be right censored. For the i subject in
groupk,i=1,...,n,k=1,..., K, let Ty be the failure
time and &y be the cause of the removal from the
study:

0, if subject was censored,

é‘ik =<1, if subject failed from cause of interest,
2, if subject failed from other causes.

The pairs (T;, &) from different subjects in a group
are assumed to -be independent and identically
distributed. However, it is not assumed that the
underlying processes leading to failures of different
types are acting independently for a given subject.
Censoring mechanism will be considered to be
independent of competing risks acting in the
population.

NOWUION  used 1 wme previous secuon wiu pe
extended to accommodate indicator of a group being
considered. That is Fy will be used to define
subdistribution or cumulative incidence function for
failures of type j in group &,

F(0)=P(T, <1.5, = j) @

Jk

Counting process notation will be extended in a
similar fashion. Let / be the index for subject

belonging to group k,  then we define
Yi(t)=1 (Tl-k >1) as an indicator of being at risk just

before time ¢ and indicator of experiencing failure
from cause j by time ¢ is N, (l)=I(Zk <t,68, = j).

Define

N, ()=>" N (1) (5)
and

Y(e)=>"v(1) (6)

Then the Ny(r) is the number of failures of type j by
time ¢ and Y, is the number of subjects still at risk just
prior to ¢ in group k. The process

N, (t)z Z; N, (t) counts the number of failures of

type j in all samples by time ¢ and the number of
subjects still at risk just prior to ¢ in the pooled

sample is given by K(t) = Z; Yk(t).

The cumulative incidence function is the primary
measure summarizing the likelihood of a specific
event in the competing risks setting. Differences in
the cumulative incidence curves would reflect
differences in the probabilities of a specific event
being observed in distinct populations in the presence
of other competing risks. Next we will present
Gray’s technique to compare the cumulative
incidence functions.

Without loss of generality we will assume that there
are only two types of failure (J = 2). The failure type
of special interest is taken to be type 1. Consider a
problem of comparing the cumulative incidence
functions for the cause of interest among K (K 2 2)
populations. Inference will be based on a sample of
size n.

The hypothesis of interest is:

I_I():F“(t)=... =F1K(f): F,"(t),foralltS T
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H, : at least one of the F|4(r)'s is different for some ¢
<7

where F () is an unspecified subdistribution

function. Inference is on the cumulative incidence
functions for all time points less than 7, which is
usually taken to be the largest time on study. The
Fy(t)'s are assumed to be continuous with
subdensities fi(1).

Gray [2] developed a class of test statistics for
making comparisons between cumulative incidence
functions.  The test statistic is based on the

(improper) random variable, X, i=1,..., n, k =
1,..., K. This random variable is deﬁned by

(N

ik

T,. ifd, =1,
o, ifd, >1.

Then P(X] <i)=P(T, <t,8, =1)=F,(t) and the
hazard rate for X is 7,(f) given by

_dr()/dt _ f, (1)
WO~ w TR0 ®

Let ﬁ]k be the estimated cumulative incidence

function for cause 1 on sample k and ﬁlo(t) be a
similar estimator based on the pooled sample. Let

S (t=) be the left-hand limit of the Kaplan-Meier
estimate of the overall survival function in sample k
obtained by considering failure from any cause as an
event. §k (t—) is defined to be 0 when Y,(#) = 0 and
the convention (/0 = 0 is employed.

The K sample statistic will be defined by assigning a
score to each group which compares subdistribution

hazard ,(¢) for each group to a combined estimate of
this hazard under the null hypothesis. Define

Iz, 20y, (- £,(-)) o)
$,(-)
The quantity 7 represents the largest time on study in

group k. An estimate of the cumulative
subdistribution hazard function for the cause of

R ()=

interest in sample &, F J.y]k u)du is given by
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. “ dF (u)  tan, ()
I, ()= = ul forr<t (10)
‘ G.-I—FU((M _) 0 Rk(u) '

The expression for IA“M suggests taking

£y (r)= de—(”) (1)

) R.(u)

as an estimator for I'’, the null value of 77, This
estimator is consistent under the null hypothesis.

K sample tests are based on scores of the form

T

z, = [, (e){dl", -al?}. (12)

0

where Wy () is suitably chosen weight function.
When the null hypothesis is true, Z = (Z,,...,Z,)" has
an asymptotic K-variate normal distribution with zero
mean and covariance matrix X which can be
consistently estimated by 5 with components given
by

o (13)
b, (0, h'dF,, ()
where
a,()=d,(t)+b,()
0.0 ==Y (e )-c. 0
()= [, ()
i 1i=1)- o
d,(1)= (0 (14)

n(l—F (1)
Here, fzk (t)= w .
nSk (l _)

In practice the weight function Wi(z) is generally of
the form L(f)R,(t), for some function L(¢). In this

case, Z; Z,=0, 50 only K — 1 of the scores are

linearly independent. An appropriate K-sample test




statistic can then be formed by using a quadratic form
consisting of K — | components of Z and thejr

estimated variance-covariance matrix X :

=)z, ()2 (z)...Z, (c)) (15)

When the nyli hypothesis is true, this statistic has an
asymptotic - chi-squared distribution  with K -]
degrees of freedom,

The form of the test statistic ( 12) is clearest when
only two groups are being compared. For this case it
1s proposed that the test is based on a score of the
form

~

pof 0 i ] o

=5 (1) 1-£,(-)

where W(\) is 3 weight function. This statistic
compares weighted averages of the subdistribution
hazards Sil(1=F ) in two groups. With the Wi(2) in
(12) being of the form L(OR(?), and setting W(7) =
L(t)R,(r)Rz(t)/[Rl(t) + Ro(D] in (16), it can be verified
that (12) has the desirable property of reducing to
(16) when only two groups are being compared,

Simulation
Competing risk data were generated using  the

absolutely continuoyg bivariate cxponential (Ay,A;,1,)
distribution with probability density function:

No Censoring

§
A g

A3 §§

Frequency
0 100

AA(4,4,)

exp[—/l, t - (/12 +/10)t2 ] ifr, <,

fleyt,)= ]
Mexp[—/izlz —-(/l, +/10)t1]’if L, >1,

Censoring time was generated from the €xponential
distribution  with parameter 1 = | a4 3
corresponding to “light” and “heavy” censorin g.

A single Covariate X, = ; = 1,....100 was
considered, and the failure time distribution was f ) if
<50 and F, if >50. This scenario reveals that the
true cutoff point for independent variable X is 50.
We have four scenarios in comparing F, and F> with
their corresponding parameter values as presented in
Table 1. The simulation was run 1000 times,

Table 1: Mode] for the Cutoff point Simulation
F F,
Modl  dddy  ayaa
A, 0,1,4 04,1

Ay 1,1,4 1,41
A; 0,1,1 0,1,1

Ay 1,1,1 1,11
== LIl

3H_ Mh. ju_
20 40 80 80 100 s 20 80 100 20 40 60 80 100

60
Figure 1: Cut off point frequencies
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Simulation result is illustrated in Figure 1. We
can see that scenarios A; and A, show
desirable result in capturing the true cutoff
point. The result is inline with our
expectation, since the value of parameter of A,
and A, are exchanged. However scenarios A,
and A, have only slightly different value of A,
in which F and F, is slightly indistinguishable.
The two last rows of Figure 1 show that the
method cannot capture the true cutoff point,
resulting in a much lower and higher cutoff
points. This shows the occurrence of end-cut-
preference as studied by Torgo [6].

Ilustration

We used the data described in example 1.3.1 in
[1] which consist of n = 205 observations for
patients with malignant melanoma (cancer of
the skin) who had a radical operation
performed at the Department of Plastic
Surgery, University Hospital of Odense,
Denmark. Through this operation the tumor
was completely removed together with the skin
within a distance of about 2.5 c¢cm around it.
All patients were followed until the end of
1977, that is, it was noted if and when any of
patients died. Note that the survival time was
known only for those patients who died before
the end of 1977. The rest of the patients were
censored at the duration in the study obtained
then. Two causes of failure were: (1) death
from malignant melanoma; and (2) death from
other causes. In example VIL2.5 of [1] it was
demonstrated that tumor thickness only had an
effect on failure of cause 1. It is interesting to
find out a cutoff point in tumor thickness risk
factor based on survival time of cause 1.

The data file can be obtained from
http://www.pubhealth.ku.dk/~pka/MalignantM

elanoma.dat and contains the variables id,
time, thick, sex and cause. Here id identifies
the patient, time is the failure time of the
patient (days after radical operation), thick is
the tumor thickness, sex is 0 for females, 1 for
males and finally cause attains the value 1 if
the patient died from malignant melanoma, 2 if
the patient died of other causes and O if the
patient was right censored. Rosthgj et al. [5]
used these data for cumulative incidence
function estimation using Cox regression
model for competing risk data.

We can use the median tumor thickness as a
simple cutoff point determination which is
1.94. 1In addition, if we use the information
about survival time, then the outcome-oriented
cutoff point determination can be used.

Next, we consider the lowess smoothed plot of
the survival time of cause 1 (death from
malignant melanoma) to determine a cutoff
point for the patient’s tumor thickness. This is
an exploration tool for cutoff point
determination and we only took into account
for failure type 1 regardless of failure type 2
and censored data.

The display of both the smooth fit and the
individual survival time of cause 1 provide
insight into the influence of specific
individuals on the estimate of the functional
form. Figure 2 suggests that treating tumor
thickness as linear is inappropriate. The
smoothed curve is almost constant up to about
5 mm and decrease almost linearly up to about
10 mm. This suggests that patient’s tumor
thickness can be coded as an indicator variable
in competing risk regression model.

5000
L

Days since operation
3000 4000
L

2000
!

1000
!

Q

0 = censored
1 = death due to melanoma
2 = death due to others

[

Tumor thickness:

Figure 2: Plot of survival time of cause 1 (death from malignant melanoma) versus tumor thickness
and lowess smooth




We now use the maximum Gray’s statistic for
dichotomizing patients into high or low risk
groups for survival time based on the patient’s
tumor thickness and also assess the
significance of the cutoff point. There were 64
distinct tumor thickness, any of which can be a
potential cut point. The maximum value of
Gray’s statistic occured at tumor thickness
cutoff point 2.17 with Gray’s statistic 29.19
(see Figure 3). We used permutation test to
evaluate the significance of this maximum
Gray’s statistic. Figure 3 (right panel) shows
that the p-value < 0.001.  This suggests that
the cutoff point is significant and that tumor
thickness is related to survival time of cause 1.

After we have found the cutoff point, we
separated the data into two groups and further

Gray's stat for cause 1

Potantiel Cutpoints for Tumor Fhickness

Figure 4: The
patients.

Figure 3: Plot of Gray’s statistic versus distinct
permutation test for its maximum value,

Thickness 0.5 mm
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0 1000 2000 23000 4000  S0p0 5000
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We estimated the

analysis was employed.
cumulative incidence function for both groups.
We can see that the two groups resulted by
dichotomizing at cutoff point 2.17 is better

separated than the others. The cumulative
incidence functions of both groups are quite
different (see Figure 4). The thicker tumor
group (thickness > 2.17) has the higher risk in
death from malignant melanoma compared to
the thinner ones (thickness < 2.17).

In the case of survival time for cause 2 which
only consists of 14 distinct thickness values,
we cannot find a good cutoff point due to the
absence of potential cutoff points. The highest
p-value (0.0786) suggests that the cutoff point
obtained is not significant and tumor thickness
is not related to survival time of other causes.

Max Gray's Stat

L

observed mairnum Gray's statistic, 20.18316

tumor thickness potential cutoff points (left) and

Probability of de ath

Frobability of death

Thickness 2.17 mm

Thickness 217+

Thickness < 2.17

0 1000 2000 2000 4000  s00Q 6000

Days since operation

Thickness 5 mm

Thickness 5 +

Thickness < & mm

0 1000 2000 3000 4000

Days since aperatian

5000 6000

estimated cumulative incidence function of malignant melanoma for two groups of
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Some Limitations

We have only focused on the dichotomization of a
continuous covariate with the assumption that such a
dichotomization is possible from biological point of
view, however, in reality, more than one cutoff point
may exist. The obtained cutoff point(s) may differ
across studies depending on several factors including
which data are used and therefore the results may not
be comparable. Lastly, there is always the possibility
of loss in information from dichotomizing a
continuous covariate, possible loss of power to detect
actual significance that can sometimes lead to biased
estimates in regression settings.

Conclusion

We have proposed an approach for dichotomization
of independent continuous variable in competing risk
data analysis based on Gray’s two-sample statistic.
We have shown that this method has the ability to
capture the true cutoff point as studied through
simulation. Finally we provided an application of our
method to separate malignant melanoma patients
based on their tumor thickness. The study of cutoff
point methodology is very important in the health
science field. Implications for preventive medical
attention are obvious. Simple, but yet accurate,
guidelines for physician and other practitioners is
provides for easy implementation.
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