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Abstract :

The identification of multiple high leverage points (HLP) can not be successfully carried oul by using a method developed for
handling singie HILP. The situation getting worse when handling Weibull distributed censored response data. We proposed method
Sor identifying multiple HLPs. The proposed method is developed based on the similar probiem for handling multiple HLPs in
multiple linear regression setting. Simulation study is conducted for assessing ils performance across a wide range of scenarios. We
found that the proposed method had good capability to identify multiple HLP. As a general rule, the proposed method perform better
in higher covariate space dimension, larger number of outlying regressor variables, larger outlying leverage distance, larger
magnitude of unusualness in response-space, larger number of mulitiple points clouds and higher percentage of censoring.

Introduction

The statistical analysis of survival time data has become a topic of considerable interest to statisticians and
workers in areas such as engineering, medicine and biological sciences. Such data may show structural
complexity, but it is the presence of censoring which sets its analysis apart from traditional statistical

techniques.

The Cox proportional hazards (PH) model is usually applied to analyze the relationship between survival
time and explanatory variables. Kudus and Ibrahim (2005) extended the model for competing risks
survival data. Whereas, Kudus er al. (2005) proposed the regression tree method based on Cox
proportional hazards for analyzing competing risks survival data. The regression tree is further extended
by using proportional hazards model for subdistribution and applied on breast cancer study (Ibrahim er al.,
2008).

Weibull regression model is a special case of Cox proportional hazards. Kalbfleisch and Prentice (2002)
showed that Weibull regression model is not only having form of proportional hazards but also log-linear
model. The problem arose when the model is fitted to data contained unusual observatious, such as high
leverage points (HLP). This problem can cause invalidity of the use of standard inferential procedure. It is
thus important for the data analyst to be able to identify such observations.

If the dataset contain more than one HLP, which is likely to be the case in most data sets, the problem of
identifying such observations become more difficult. There is evidence (Rousseeuw and Leroy, 1987) that
the single HLP detection techniques have been proved to be ineffective to detect potential observations in
the presence of multiple HLP in linear regression problem. Wisnowski et al. (2001) stated that many
standard least-squares regression diagnostics quantities and plots have been shown to fail in the presence of
multiple outliers (including multiple HLP), particularly if the observations are clustered in an outlying
cloud. Imon (1996) introduced generalized potentials (p;*) and using it for identifying multiple HLP in
linear regression setting.
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Since there is no existing method for identifying multiple HLP in Weibull regression model, then it is thus
important to develop a method for such problem. The proposed method must have a closed relation to the
existing method for linear regression problem due to the advantage of log-linear forin of Weibull regression
model. Hence, it would be a generalization from the existing method. We assesed its performance through
a serics of Monte Carlo simulation in various multiple HLP configurations likely to be encountered in

practice.

In Section 2 we review Weibull regression modeling through proportional hazards or log-linear models and
their parameter estimations by means of maximum likelihood method. Section 3 presented single and
mutltiple HLP identifications for Weibull regression model. Extensive Monte Carlo simulation to evaluate
multiple HLP identification method is designed and conducted in Section 4 and last section presents a

conclusion of the paper.
The Weibull Regression Modeling

The PH model

Consider survival time I"> 0, sometime censored, and suppose that a vector of basic covariates x ' = (x, x5,
...) is available on each individual, their measurements having been taken at or before time 0. Aspect of x
are expected to be predictive of subsequent survival time. The principal problem is that of modeling and
determining the relationship between T and covariates x.

Recall that Weibuil distribution with scale parameter A and shape parameter y has hazard function
he) = yaer! (1)
To include the covariate vector x; of the i individual, the hazard for a given x; can be expressed as

h(t l Ei): hD(l‘)-eXp(Zﬂjxﬁ)
= yhexp(Y. f,x, ) @

Now, Weibull distribution has scale parameter 1=2 exp(z B;x ],) and shape parameter . The survivor

function turns out to be

S(ZIL):eXP[‘ exp(zlgjxﬁ)’br] 3)

and probability density function is
Aetx)= Ayexp(Y 8,7, b expl-exp(S g%, e | )

Given covariate x;, let t,.°, i=1, ..., n, be the true failure times of a sample of size n, assumed to be

independent identically distributed with a Weibull distribution with hazard function (2). Assuming that the
observations are subject to arbitrary right censoring, the period of follow-up for the ith individual is limited

to a value ¢, Then, the observed failure time of the ith individual is given by #, = min(¢’, ¢,). Define & such

that §=0if # > ¢; (a censored observation) and &; = 1 if £’ <c; (an observed failure of some kind).

The Weibull proportional hazards model is fitted by constructing the likelihood function of the n
observations
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n

ar. 8)=T TG s (5)

i=1
where f{.) is (4) and S() is (3). It is easier to maximize logarithm of this function instead of likelihood
function itself for obtaining estimate of the unknown parameters A, yand 8.
Log-linear model
Consider a log-linear model for the random variable 7; associated with the survival time of the /™ individual

in a survival study, according to which

InT, = ,B0+Zﬂjx + o€, (6)

In this model B, f3,, ..., S, are the unkncwn coefficients of the value of k explanatory variables X3, X,

., X, and f, , o are two further parameters, known as the intercept and scale parameter, respectively.

The quantity & is a 1andom variable used te model departure of the values of In T; frem the linear part of
the model. Suppose that ¢ follows standard extreme value distribution with probability density function
given by

f(s):exp(gwe‘} for—w < <w @)
Let & =¢, then the probability density function of ¢ is f(f)z ¢™® which is exponential distribution with
unit mean.
Now consider the survivor function of 7,
S(t1x,)=P(T, 21)
= P(In7, 2 In¢)
= (,[i’ +?ﬁx + O%, >1nr)

N lnt—ﬁ0 Zﬂ/xﬂj

il
)

&;

P( exp lnt“ﬂo 2% }] (8

a

il

Since ¢ =¢° has a unit exponential distribution, so P(e‘ P f)z e™® . It then follows that

S(tlgi)=exp[—exp{lm_ﬂ° 205 H )

o

There is a direct correspondence between equation (3) and equation (9), in the sense that
ﬂjz—éj—, /1=exp(—-&] and y=l (10)
o o

With log-linear form of Weibull regression model, the likelihood function has a simple form. Since
probability density function of ¢is (7), then density function of ¥, = In T; is given by
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11x)=—exple, —e*) (1)
and its survivor function is
S(y1x,) = expl-¢*) (12)
where
: — b - 2.B% (14)
p

The likelihood function based on yy, s, ..., ¥, which are logarithm of the »n observed survival times ¢, £,
., t,is then

Ll i )= LT 450 B

The Identification of HLP for Weibull Regression Model

Single HLP Identification

HLP is observation which is isolated in the covariate space (i.e., far removed from the main body of points
in the X space). They can be thought of as outliers in the covariate space (Chatterjee and Hadi, 1986).
HLP need not be influential, and influential observations are not necessarily HLP.

There are several ways to understand the characteristics of leverage in the linear regression model yi = a, +
Layx, + &, one of them is w;, = 8y, /dy; which measure the amount of leverage of the response value y; on

the predicted value 3,. w, most directly reflects the influence of y; on the fit. The generalization of

leverage from linear regression to more general models can be based on this viewpoint.

Wei et al. (1998) showed that generalized leverage derived by the above approach is _
A e\ .
W(Q): {Do)(“ [90) (‘ ley)} Lvé (16)

where

_oEY)  _oue) iy 07 (Q)

Do = 00"’ foo = 2600" o = 060y"

For log-linear specification of Weibull regression model (6)

E(Z) =p1+ Xé' , 0= (ﬁ;,é',a) and /(@) is logarithm of likelihood function (15).
If we only concern with regression coefficient y = (,30, A ) ) , then the generalized leverage is
wlp)= {x(x7Ax) x7 4}

where A= diag{exp(z,. )}, i=1,.,n and z;is (14).
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Next, let X = A X | it is then
wl(3)= X(¥rx) ¥ (18)
Thus the generalized leverage of the i observation is given by
w, =5 (FTE)'%i=12,0n (19)

In linear regression setting, points with w; greater than 2(k+1)/n (twice the average value) are generally
regarded as HLP (Hoaglin and Welsch, 1978). Since, the situation is different for log-linear model, then
we use 0.2 as a calibration point which stated by Huber (1981) as risky to dangerous points.

Another statistic for HLP identification is called potential. Potential is leverage of the ™ point which is
based on a fit to the data with the i case deleted, namely

l)r‘i :;:T(i(f)i(x))‘]}/ni: 1,2,.“,)’1 (20)
where X () 1S matrix X with i case deleted. Simple relationship between generalized leverage (19) and

potential (20) is

W
P = - _ 2D

with cut-off point: Median(p;) + 3 MAD(p;;), where MAD(p;;) = Median{| p;; - Median(p;)]}/0.6745.
Mudtiple HLPs Identification

Multiple HLPs identification method for Weibull regression model will be proposed in this section. It is
motivated by the anticipation that the single case deleted measure discussed in the previous section may be

ineffective for the identification of multiple HLPs because of masking and/or swamping effects. Let KRbe a
set of cases remaining' in the analysis and D be a set of cases 'deleted’. Hence R contains (n-d) cases after

d < (n—k) cases in D are deleted. We assume that the last d rows of X is D set. Group deleted leverage
based on group deleted cases D is

Wiy = 5T (X1, ) % i= 12,001 (22)

with cut-off point: Median(wyg) + 3 MAD(w;). By adopting generalized potential proposed by Imon
(1996), then its corresponding group deleted potential tumns out to be

Wiy | .
. ——=; forieR
Di =y 1=wp (23)

|\w,.,.(R); forie D

with cut-off point: Median(p:,.)+ 3MAD(p,.',.)

Simulation on Identification of Multiple HLP for Weibull Regression Model

Scenario
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We use Monte Carlo simulation to examine the performance of the multiple HLPs detection procedures
across a wide range of scenarios. The simulation generated 90% of clean observations and plant HLPs at
location specified by the scenario and factor settings. The regressor variables levels for clean observations
are generated from a multivariate normal distribution with a mean of z£=7.5 and standard deviation of
0,=4.0. The choice of these parameters does not affect the result of the simulations. The survival time

response for the /™ clean observation is generated from Weibull ( A exp(z Bx, ), 7) ,where 1=1, =-3
and y= 3/2 which correspond to g, =0, /3; =2 and o= 2/3 in log-linear form of Weibull regression. For

the planted HLPs, the /% regressor variable value for the /" observations is x =% ctoan + 46, + gj'.,. where

X is the average of the clean value for the /* regressor, & is the magnitude of the outlying shift

J.clean

distance in X-space and e; is a random variate from a {(0,0.25). We use the g,; term to separate multiple
observations in a cloud. If the /® observation is both HLP and regression outlier, then response value f; is
t, =t +38y0,, where ¢ is generated from Weibull(/iexp(g:’g), y), Or is the magnitude of the outlying

distance off the regression plane in standard deviation units, o

Beside all the above factors, we also consider the level of censoring percentage (p.). The percentage of
censoring is defined by letting C which follow Uniform(0,a.), where a. will be chosen such that it results in
an overall probability of censoring p, = P(T> Clx).

Our simulation studies aim to characterize the effects of specific factors on two primary measures of
performance: detection capability and false alarm rate. The false alarm rate is the probability that a clean
observation is swamped and the complement of detection probability is the masking probability. The
factors considered are:

- Magnitude of unusualness in X-space, & (3 and 5)

- Number of clouds (1 and 2)

- Magnitude of unusualness in response-space, g (5)

- Percentage of censoring, p. = (0%, 5% and 10%)

- Dimension of data ((n,# x variables) = (40,2) and (60,6))

- Proportion of x variables with extreme values (all &£ variables, 1 out of & variables and 3 out of 6 variables)

Each procedure’s performance is evaluated on its ability to detect the planted HLPs and avoid false alarms.
Both are reported for 500 replications.

Result

Table 1 and 2 showed the simulation results for one cloud of HLPs with 3 and 5 unit magnitude of
usualness in X-space, respectively. Multiple HLPs detection based on wj and p; showed better result.

The same result is also obtained from simulation with &, = 5. We also conduct simulation for 2 clouds of
HLPs and 2 clouds of HLPs located at different response-space magnitude. The results still showed better

performance for wzy and p;, .

& p. _ (nk)  xvariables ay Q) ) 4)
30, 0% 402 2 0.035(0.001) 0.417(0.098) 0.663(0.071) 0.639(0.099)
(1 cloud) 1 0.020(0.001) 0.354(0.098) 0.483(0.077) 0.453(0.103)

60,6 6 0.019(0.007) 0.172(0.101) 0.708(0.032) 0.667(0.079)

3 0.025(0.006) 0.227(0.095) 0.568(0.035) 0.523(0.082)

1 0.020(0.006) 0.198(0.095) 0.314(0.042) 0.271(0.091)

5% 40,2 2 0.030(0.001) 0.444(0.094) 0.686(0.070) 0.665(0.095)
1 0.017¢0.001) 0.377(0.097) 0.512(0.076) 0.493(0.102)
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0.014(0.005)
0.032(0.005)
0.018(0.006)
0.028(0.001)
0.016(0.001)
0.014(0.004)
0.029(0.005)
0.018(0.006)

0.1100.076)
0.212(0.089)
0.197(0.093)
0.452(0.092)
0.377(0.098)
0.099(0.071)
0.196(0.083)
0.197(0.091)

0.805(0.024)
0.600(0.032)
0.338(0.041)
0.701(0.069)
0.515(0.075)
0.826(0.022)
0.645(0.029)
0.336(0.040)

0.783(0.059)
0.563(0.077)
0.283(0.088)
0.677(0.095)
0.490(0.102)
0.805(0.054)
0.610(0.071)
0.278(0.087)

Average probabilities

0.022(0.004)

0.268(0.092)

0.580(0.049)

0.547(0.086)

Note: * Four detection methods compared: (1) generalized leverage, (2) potential, (3) group deleted

leverage, (4) group deleted potential

Table 1. Scenario with detection and false alarm probabilities (in parenthesis) for 1 cloud multiple HLPs

with 30y of magnitude of usualness in X-space

oL Pe {(nk)  x variables

()

@)

€)]

4)

S0y 0% 40,2
(1 cloud)

60,6

5% 40,2

60,6

10% 40,2

60,6

— N = N = W N = D — L) N — RO

0.086(0.001)
0.071(0.001)
0.030(0.007)
0.049(0.005)
0.045(0.006)
0.078(0.001)
0.067(0.001)
0.014(0.003)
0.041(0.004)
0.038(0.005)
0.068(0.001)
0.063(0.001)
0.016(0.003)
0.040(0.004)
0.034(0.005)

0.523(0.093)
0.497(0.090)
0.200(0.100)
0.274(0.094)
0.278(0.091)
0.577(0.089)
0.527(0.089)
0.091(0.058)
0.230(0.074)
0.273(0.087)
0.617(0.088)
0.546(0.086)
0.088(0.057)
0.219(0.068)
0.269(0.083)

0.861(0.068)
0.757(0.069)
0.867(0.029)
0.787(0.030)
0.550(0.034)
0.871(0.065)
0.749(0.069)
0.937(0.018)
0.847(0.024)
0.586(0.032)
0.886(0.062)
0.763(0.068)
0.939(0.018)
0.854(0.022)
0.618(0.031)

0.849(0.095)
0.740(0.096)
0.850(0.075)
0.760(0.076)
0.506(0.082)
0.863(0.090)
0.731(0.095)
0.926(0.045)
0.821(0.061)
0.545(0.079)
0.878(0.086)
0.751(0.093)
0.928(0.044)
0.835(0.057)
0.572(0.076)

Average probabilities

0.049(0.003)

0.347(0.083)

0.791(0.043)

0.770(0.077)

Note: * Four detection methods compared: (1) generalized leverage, (2) potential, (3) group deleted

leverage, (4) group deleted potential

Table 2. Scenario with detection and false alarm probabilities (in parenthesis) for 1 cloud multiple HLPs

with 50, of magnitude of usualness in X-space

Conclusion

The group deleted procedure (wiz) and p; ) have the better detection probability and have false alarm rate

about the nominal 5% level. As a general rule, the proposed method perform better in higher covariate
space dimension, larger number of outlying regressor variables, larger outlying leverage distance, larger
magnitude of unusualness in response-space, larger number of multiple points clouds and higher percentage

of censoring.
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