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On the Analysis of Nondetect (Left-censored) Environmental Data

Abdul Kudus'? and Noor Akma Ibrahim®
! Department of Statistics, Bandung Islamic University
" Institute Jor Mathematical Research - Universiti Putra Malaysia
“’Department of Mathematics - Universiti Putra Malaysia
B akudus69@yahoo.com, ’ nakma@putra. upm. edu. my

Abstract. It is common that some observations of environmental measurements such as
pollutant levels are recorded as below the detection (or reporting) limits of instrumentation.
A sample of data contains nondetect (left-censored) observations if some of the observations
are reported only as being below some censoring level. This practice, however, creates
special problems in the analysis of the data. Although nondetect results in some loss of
information, we can still use data that contain nondetect for graphical and statistical analysis,
In this paper we discuss various statistical methods for dealing with nondetect data, i.e. graph
creation and distribution parameters estimation. Those include simple substitution of
detection limits, maximum likelihood estimators, and probability plotting.

Introduction

Environmental data such as chemical concentrations in soil, air, and water frequently contain values that are
below the detection limit (DL). They are recorded as below specified analytical reporting limits due to
measurement capacities or economical/practical concerns. In a spreadsheet or file as received from the
laboratory these data will most often be marked as “<DL”, where DL is the actual value of the detection limit
(e.g.,0.001 ppm).

Statistically, a data set with nondetect observations recorded as being below a certain limit is called "left
censored”. Type | left censoring is most ofien encountered; that is, each detection limit is fixed and a random
(but known) number of censored observations occur below each limit. The data in a given sample may be
subject to a single detection limit (singly censored) or multiple detection limits (multiply censored). Although
this results in some loss of information, we can still use data that contain nondetects for graphical and statistical
analysis. Inevitably, more importance is placed on extracting information from nondetect observations,

We explore some implications of these nondetects in the summary, analysis, and interpretation. Alternative
approaches for handling nondetect data are examined, with practical considerations being a key element in the
selection of appropriate methodology.

There are several approaches to dealing with data where some values are “<DL”. Options are:

- Delete the whole variable or all samples with values “<DL” from data analysis;

- Mark all observations “<DL” as missing;

- Model a distribution in the interval [0, DL], and assign an arbitrarily chosen value from this
distribution to each sample <DL;

- Try to predict a value for this variable in each sample via multiple regression (imputation) techniques
using all other analytical results; or

- Setall values marked “<DL” to an arbitrarily chosen low number, e.g., half the DL.

None of these solutions is ideal. To delete samples from data analysis is not acceptable, it will shift all statistical
estimates towards the “high” end, although there is information that the concentration in a considerable number
of samples is low. The same happens if the values are marked as “missing”.

To assess air quality data, it is useful to determine the probability distribution that best fits the data, since a
distribution provides a better characterization of the data than point estimates alone. For instance, probability
distributions can be used to assess the likelihood of observing data points above hazard threshold limits
established by regulatory bodies (e.g. Wild et al. 1996). Knowledge of the underlying data distribution permits
analyses of observations below the analytical limit of detection that are more precise than commonly used
distribution-free substitution methods.
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Common candidate probability distributions used for modeling environmental contamination data include two-
parameter lognormal, gamma, four-parameter beta, and Weibull distributions (Holland and Fitz-Simmons 1982;
Gilbert 1987). Given a choice between these distributions, the Weibull is preferred since it has many advantages
over the other three. These advantages include the explicit computability of percentiles, maximum likelihood
equations that can be solved by simple iteration methods, and a distribution function that can be linearized for
least-squares estimates of parameter values. Of the remaining three probability distributions, the gamma is the
most difficult to work with. Disadvantages include the necessity of partial differentiation of gamma functions
for the calculation of maximum likelihood estimators (MLESs). The beta distribution is only appropriate for data
that are bounded by both lower and upper limits (Gilbert 1987). Because of these limitations of the gamma and
beta distributions, all statistical analyses presented here focus on Weibull and lognormal distributions.

Section 2 discussed statistical modelling of environmental data by parametric model. The methods for
estimating distribution parameter which are fitted by using complete and nondetect observation are thoroughly
described. Section 3 presents the actual analysis of Malaysia’s air quality data, as well as a comparison of
methods used to estimate parameters for simulated and actual lefi-censored data. Section 4 discusses results and
offers some concluding remarks.

Statistical Background and Methods

Let X < . < Xg< X< . Xg be an ordered random sample of size n from a particular
distribution, where X(s), ..., X are censored on the left. Let 7 be the total sample size, m be the number of
non-censored (fully measured) observations, and ¢ =n — m be the number of lefi-censored observations, where n
=m+tec.

If X; is censored on the left, then X, is not observed, but its left-censored limit DI is observed, and it is
understood that X; < DL for i = 1, .., ¢. All methods described can be used to estimate the parameter of
distribution such as lognormal and Weibull.

The Lognormal model

The lognormal distribution, which is a simple transform of a normal distribution, is often considered the default
in environment analysis. By considering its relationship with normal distribution, the central limit theorem is
applicable upon logarithmic transformation,

Maximum likelihood estimation method

Assume that the random variable X; can be described adequately by a lognormal distribution. In the other hand
In-transformed of X will normally distributed, Let YVi=In(X) fori=c+1,...,nand let Vope = In (DL). The
general maximum likelihood function for any distribution with parameter vector 0 is given by

L(ﬁlz)=(ZJ[1’(X<DL)T [1/(x) 8

i=c+1
where fand P(X < DL) = F(DL) denote the pdf and cdf of the population, respectively. The likelihood is
product of (1) the probability of ¢ observations out of » being less than DL and (2) the product of values of the
pdf evaluated at the uncensored observations. In the case of lognormal model above, we have

n

> (n-u)

g (ﬂv % ) ) (:J[CD((S)]C l:\/(27lr)0'v } o - 20, @

v

Yeansor — H,

where & = , @ is the cumulative distribution function of a standard normal variate, £, is the mean and

v

oy is the standard deviation of the In-transformed data.

The log-likelihood function for a sample of the type under consideration is given by

u,,0,)= ln(:j—mlnm—mlncry+cln<1>(§)— 2(172 Z (v -u) 3)

y i=c+l

Equating to zero the first partial derivatives of the log-likelihood function with respect to 4, and gy yields:
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e TC B v
and
_C_¢(§)§+L”__i§1(yi—yv) =0 (5)

The maximum likelihood estimates, A, and G, , of y1, and g; are formulated by Cohen (1959) as follows

A

=5~ (T~ Yonor) (6)
&V = Vs2+j(y—ycfﬂ50r)2 (7)

Thus, the maximum likelihood estimates of the mean 4, and the standard deviation a, of the censored data are
based on:
- themean ¥ and variance s* of the m In-transformed observations which are numerically known,

- the detection limit, DL,
- apositive constant A which provided by Cohen (1959).

To compute the estimated mean 4 and standard deviation 6, of the original lognormal data set x, the
following back-transformation is required:

A= exp(ﬂy +-;—&j) ®
&, =il [exp(67)-1] ©
Probability-plot regression method

It is possible to estimate the mean and standard deviation of a censored lognormally distributed data set based
on a linear relationship of the In-transformed uncensored values versus the normal scores z;,. The regression
estimates of 4, and o, are found by computing the least-squares estimates in the following linear model;

Yo =t Oqu’.l(pf) +g (10)

where p, denotes the Blom plotting position associated with the / largest values and is defined by (Kroll and
Stedinger, 1996)

pi:£+ﬂ(iﬂ5__£),[:c+l,'”’n (11)
n aA\n+025-¢

and @'(p,) denotes the inverse cumulative normal distribution evaluated at Pi

The Weibull model (complete data)

While widely used, the lognormal distribution does not always provide the optimal representation of
contamination data (cf. El-Shaarawi and Viveros 1997). A suitable alternative is the Weibull distribution
(Gilbert 1987). In the following, we will use the two-parameter Weibull probability density function
(PDF) in the terminology
A=Yz
f(xla,ﬂ)=—(—) e
a\a
where o and S are scale and shape parameters, respectively. The expected value and variance of x in terms of
these parameters are

(12)
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E(Xx)= aF(l +%] and Var(X)= az[r(n%)-ﬁ [1+%H (13)

Maximum likelihood estimation method

For the case of all uncensored data, the log-tiketihood function is:

”

/(a,ﬂ[z):nlnﬂ—nﬂlna+(/}’—])zn:lnx,—~17fo (14)
=] 24

i=1
By differentiating log-liketihood function (14) with respect to @ and g in turmn and equating to zero, the
maximum-likelihood estimators, ¢ and ,é satisfy the equations:

1
——lhha+2— 4 -
n na’

(lnéZx,ﬁ—-Zx,/} lnx,)zo (15)
i=1 i=1

and
s (I 54
a—[an,J (16)

In principle, a standard iterative search method, such as the Newton-Raphson procedure, can be used to solve
(15) and (16).

Linear regression method

An alternative to maximum likelihood estimation of the Weibull parameters is simple linear regression (LR).
The regression is indeed linear, since the cumulative distribution function (CDF) of the Weibull distribution can
be logarithmically transformed as

In(-In(l- F(x)))) = Bnx, - flne (17)
In actual data analyses, the true CDF is not known. It is typically approximated non-parametrically by

F(x,)=(i~-05)/n (18)

where i is the rank of the observation, # is the total sample size, and 0.5 is a continuity correction factor (see
Johnson and Wichern 1992). The continuity factor is included in the equation to prevent singularities that would

result in (17) at F(x) = 0 and 1. Altemative forms for F(x) include (~2)/(1+1) and i/(n+1) (Gan and

Koehler 1990). In the LR method, the confidence interval (CI) for S is estimated from the CI of the regression
slope parameter, while the CI for & is derived by using normal approximation for the intercept.

The fits of candidate probability distributions to the data were assessed in our analysis with Kolmogorov-
Smirnov test of fit. Because of the logarithmic relationships between normal and lognormal and between
Weibull and Gumbel distributions, a log transformation of the data allows us to assess efficiently the fit of both
the lognormal and Weibull distributions to the data.

Non-detects

The presence of non-detect observations complicate all aspects of statistical evaluation and must be taken into
account, especially when they occur in relatively large numbers. Dealing with non-detects is essentially a
problem of left data censoring with a fixed truncation point that equals the limit of detection. One common

method for dealing with the problem is to set the non-detects equal to some fill-in constant such as zero, the
limit of detection, or a value somewhere in between, such as

nondetect = %L- (19)

Substitution by (19) implicitly assumes that non-detects are uniformly distributed below the DL, where (19) is
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interpreted as the expected value of the non-detects.

In general, using replacement values for non-detects produces bias in parameter estimates, and the direction and
magnitude of this bias depend on the estimated parameter values (El-Shaarawi and Esterby 1992). For this
reason, methods accounting for the underlying distribution of the data are recommended over simple
substitution (Helsel 2005). Two such methods are a maximum likelihood procedure for left-censored data first
considered by Cohen (1959), and a log-probability regression technique developed by Travis and Land (1990).
Indeed, Helsel (1990) states that these two methods give unbiased results when the data sufficiently fit the
assumed distribution and the sample size is large.

In most investigations of left-censored estimation methods, the data are assumed to be lognormally
distributed, or they are transformed to normality (e.g. Stoline 1991). in contrast, little has been written about
estimating parameters for the left-censored Weibull. Since the data may be best represented by this
distribution, we explored means of dealing with non-detects in Weibull distributed data. Two strategies were
pursued. The first is based on maximum likelihood estimation, and the second on the linearized representation
of the Weibull in (17).

Maximum likelihood estimation method

As a method for estimating left-censored Weibull parameters, we derived MLEs for such data. By considering
the general likelihood function (1) and using Weibull distribution, the likelihood function takes the form

5

» n
Ha,flx)= ln[n)+cln{l—exp{(~D—L] :‘}+mlnﬂ—mﬂlna+(ﬂ—l) Z Inx, —%— (20)
< [24 i=c+1 a
where c is the number of non-detects. Partial differentiation of (20) yields the estimating equations:

-,

+—A—-mlnd+Zlnx,.+%}[]no?Z x,/}—folnx,):O @1
@

{ (DL)ﬁ} ﬂ i=c+l i=c+l} i=c+l
I-exps-| —
a
V] Vi
)],
¢ Gl mb_ B 3

LN S ) 22

{ “DLYJ} PRI )
a l—exp - —
[74

Equations (21) and (22) are not separable, but they can be solved simultaneously to yield ¢ and ﬁ .

and

>

Linear regression method

The second method for determining the left-censored Weibull parameters is based on the linear transformation
of the Weibull CDF, as presented in equation (17). This method is particularly well suited for left-censored data
since the information necessary for determining parameter values is contained in the cumulative probabilities of
the observed data points, which are independent of the precise location of the non-detects. Thus, the cumulative
function of the group of non-detects can be estimated by the rank of the data even though their individual values
are unknown. Specifically, the censored points are expected to lie somewhere below the limit of detection on the
regression line of In(-In(1- F (x,))) versus In x,, whose slope and intercept are computed from the measured
values (Gilbert and Kinnison 1981). This method is computationally simpler than the maximum likelihood
technique presented above; however, results may be biased due to the log transformation of the data (e.g., Helsel
1990).

Analysis of Malaysia’s Air Quality Data

To illustrate the practical application of estimators discussed in the preceding sections, the following example
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has been selected. The Malaysia Air Quality Data Report published by the Department of Environment (DOE)
contains concentration of some air quality which monitored across country. There are 28 sites managed by
DOE in Peninsula, Sabah and Sarawak. Three pollutants concentrations are selected, i.e. particulate matter
(PM10), nitrogen dioxide (NO,) and ozone (03).

We Performs a Kolmogorov-Smimov goodness-of-fit test to test the hypothesis that a random sample comes from
lognormal or Weibull distribution. The result shows that all three pollutants concentration considered here are
well modeled by the Weibull distribution. The lognormal cannot be rejected for all of the three pollutant
concentration, but its p-value is inferior compared to the Weibull as presented in Table 1.

Table 1. Goodness of fit test for pollutant concentration

PM10 NO, 0O;
statistic  p-value  statistic  p-value statistic  p-value
Lognormal 0.111 0.500 0.168 0.057 0.121 0.500
Weibull 0.110 0.865 0.127 0.745 0.137 0.731

Weibull parameter estimates for all three pollutant concentrations are shown in Table 2. The MLEs
estimates are given as a comparison to the estimates obtained by linear regression. Inspection of
the table indicates that there is good agreement between the maximum likelihood and the LR
estimators across all three pollutant concentrations.

Table 2. Weibull parameter estimates for pollutant concentration data,

PM10 NO, 0,
MLE
@ (95%CI) 31,162 (27.753,34.571) 0.010 (0.007,0.012) 0.034  (0.029,0.040)
B (95%CI) 3.647 (2.651,4.644) 1.527  (1.080,1.974) 2.588  (1.757,3.420)
LR
@ (95%Cl)  31.078 (30.426,31.730) 0.010  (0.009,0.010) 0.034  (0.033,0.036)
B (95% CI) 4.021  (3.767,4.274) 1.484 (1.391,1.578) 2.651 (2.415,2.887)

Test of parameter estimation methods for data sets with non-detects

The completeness of the set of pollutant concentrations gives us the opportunity to test the effects of non-
detects on parameter estimates. To this end, we artificially truncated the data to simulate the effects of
higher limits of detection. Three parameter estimation techniques were considered: the ML method given by
(21) and (22); the substitution method (SM), for which maximum likelihood estimates are obtained upon
estimating the non-detects as shown in (19); and the LR method (17), where parameters are determined from
a regression of data points above the DL. Ideally, a good parameter estimation technique for censored data
should yield results in agreement with those obtained from the complete data. The standard method for
measuring the deviation of parameter estimates from a reference value is given by the root mean square
error:

RMSE = ﬁzil(é -6)’ (23)

where @ is the value of the reference parameter, 6 is the parameter estimate, and B is the total
number of censored data samples. In our simulation examples, the reference parameters are set
equal to estimates obtained from the complete data set, except for simulated data which use its
parameter value.

As a preliminary assessment for the truncation method that was unaffected by the selection of a
particular data set, parameters were estimated for random data taken from simulated Weibull
distributions. We generate 200 random data sets each had a sample size of n = 1000 with Weibull
parameters were o = 31 and g = 4. The ten lowest values were progressively censored until one half
of the observations was removed, giving a total of 50 subsamples for each simulated data set. The
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left truncation point for the ML method was set e

data set.

Table 3.  Minimum, maximum and RMSE of the Weibull parameter estimates for all censore
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d subsamples.

Simulated Weibull

(a=31,44) PM10 NO, 0,

MLE

& [min,max] [27.364,30.961]  [27.658,31.069) {0.007,0.010] [0.029,0.034]

RMSE 1.249 1.361 0.001 0.002

f [min,max] [2:261, 3.978] [2.248,3.570] [0.883,1.491] [1.517,2.512]

RMSE 0.816 0.697 0.326 0.564
SM

@ [min,max] [27.535,30.946]  [27.749,30.941) (0.009,0.010] [0.031,0.034)

RMSE 1.495 1.694 0.000 0.002

£ [min,max] [2.518, 3.960] [2.445,3.463] [1.490,1.603] [1.914,2.459]

RMSE 0.907 0.810 0.008 0.460
LR

@ [min,max] [31.054,36.353]  [31.528,36.712] [0.010,0.014] [0.035,0.044]

RMSE 2751 3.050 0.002 0.006

£ Imin,max] [4.306,9.203] [4.450,6.679] [1.868,2.705] [2.865,4.728]

RMSE 2911 1915 0.943 1.102

qual to the lowest observation in each censored

The ranges and RMSEs of the parameter estimates for data from the simulated Weibull are
summarized in column one of Table 3. In general, all three methods produced a small range of
parameter estimates and low RMSEs. The ML estimates gave the lowest RMSEs with values of 1.249

and 0.816 for ¢ and ,5' , respectively. SM estimates had deviations that were slightly higher than
the ML estimates, while estimates from linear regression produced largest RMSEs, 2.751 for ¢ and
2911 for ﬂ Parameter estimates for all the subsamples are depicted graphically in Figure 1 for all

three methods.
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Figure 1. Estimates of the scale (@) and shape (f) parameters for the simulated Weibull distribution (a=31,
=4) data.

Based on the above results one could be tempted to conclude that the MLE method is slightly more
reliable means for estimating parameters from left-censored data compared to the rest.

Ranges and RMSEs for the Weibull parameter estimated from the left-censored pollutant concentration data
are also given in Table 3. These data were progressively censored with up to one half of the observations
removed, giving up to 14 subsamples containing between 1 and 14 non-detects. In general, LR parameters
gave the largest deviations, while the RMSEs for the ML and the SM parameters were approximately equal
within each pollutant data set. Again, the substitution method by equation (36) most likely gave good
estimates. However, the RMSE of the parameter estimates for these pollutants gives an incomplete picture.
Figure 2 shows the parameter estimates for PM10 subsamples. In this graph, the estimates are diverging as the
truncation value increase. The same result is also found for O, subsamples (see Figure 3). The slightly
different pattern shown by parameter estimates in the NO, subsamples, where SM method gives fairly
consistent estimates. Even though ML and LR estimates still diverging (see Figure 4).

Figure 5 illustrates the subsample means for all three pollutant concentrations calculated by (30) with the ML
parameters. From this figure, it is evident that estimates of the mean are less sensitive to data censoring than

the parameters themselves.
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Figure 3. Estimates of the scale () and shape (£) parameters for the O pollutant data.

Prosiding Seminar Kebangsaan Pengoptimuman Berangka dan Penyelidikan Operasi Ke-2
13-14 Disember 2008, Universiti Malaysia Terengganu.

~
+
/ -
R A TN
+ */
+/ +_+/
+/ .
S
34 +—+/ o~
/ 3 <
a £ /
5 w0
a -1 +
R &
8 +/ § +/
s &
< i |/
p N g v f
\a_::u\ =
o,
8- °\°"°\o \a\:‘,\o
a—a \0 A o
o A—aO
\A °, @~ \A\ﬂ—o
\az‘o AR
-
o o=MLE R\ o=MLE \A\z\g%
8 a=sM o A=38M N
+=LR +=LR o
o~
¥ T T T T T T T T T T
0.0 01 02 03 0.4 05 [eXe] 01 02 03 0.4 0.5
Fraction of Observations Omitted Fraction of Observations Omitted
Estimates of the scale (a) and shape () parameters for the PM 10 pollutant data.
]
2 ] +
=
+/* o */
2
i/ +/
e /
g ] ; / 24 -
s
+——+/ /
i3
+/ g o P
s H
+ o
e
e £, -
Fmmg 2 a1 /
_— I ¥
N E |/
— w
S—O:A\A’A LN :\g
0, o \D
=3 o N
& 1%,
o \o \9*6
=o,
o=MLE S o=MLE Ne—tma, o
a=SM A=SM o—o_
+=LR +=1R N
0,
5 ol o
3
0o 01 02 03 0.4 0s 0.0 01 02 0.3 0.4 05

Fraction of Observations Omitted

Fraction of Qbservations Omitted

107



e d
I
+—
3 /
=
e +—+
~* by
+ PP St SEVL
s o | P
4 n +
i e
o e 7
S P e
., © + . +
5 e 3 /
£ - E o hd
+ >
: - $8
a 7 o +
g 2 2 2
G + ]
g o |7 gaa N s
o —O=fA—bea_aL ,_
3 ‘°\°\o e beaa” N, L 3 o /“\A_A
- (I B X S PRy N U SN
: on R .
ki o< £ ~o
ul "\O & \o\0
g ™o ~ou
a o %<,
~
0\
\ a <o
o—o -
\O—O
§_ o=MLE o=MLE
S A=S8M A=SM
+=LR +=LR
@
S
T T T T T T T T T T T T
oo 01 02 a3 04 05 0.0 01 02 03 c4 05
Fraction of Observations Omitted Fraction of Observations Omitted

Figure 4. Estimates of the scale (@) and shape (/) parameters for the NO, pollutant data.
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Figure 5. Estimates of the mean according to (13) for pollutant concentration data obtained from ML
parameter estimates for all left-censored subsamples.

Conclusion

In this paper we presented methods for dealing with nondetect observations. By assuming data follow
lognormal or Weibull distribution, MLE and parameter estimation based on linear regression method are
discussed. Since lognormally distributed data can be viewed as normally distributed in the log-transformed
data, then we can work with the normal distribution setting for analyzing such data. This was accomplished by
first determining the probability distributions that appropriately fit the data, and second, by estimating the
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parameters of the best-fitting distributions. For the first part, we demonstrated that Kolmogorov-Smirnov test
provide an efficient and effective means for determining the fit of given probability distributions to the data. In
the case of the lognormal, this was most easily accomplished by assessing the fit of the normal distribution to
the natural log of the observations. When the normal distribution was applied to the log of pollutant
concentration and the Weibull distribution was applied to the original pollutant concentration data, it was
determined that the Weibull distribution provided a better fit than the lognormal for all three pollutant
concentration considered.

The Weibull parameters for the pollutant concentration data were estimated by two methods: from maximum
likelihood equations and regression on the linearized cumulative distribution function. Of these methods,
estimates from linear regression are analytically the simplest to obtain. However, because of the logarithmic
transformations involved, the lowest few concentrations may bias the regression parameters.

Because environmental data often contain non-detection points, we addressed the problem of estimating Weibull
parameters for left-censored samples. As one possible solution, we proposed Weibull MLEs derived from the
maximum likelihood equation for left-censored data. Another methods considered were regression on the
lincarized distribution function based on measured observations only, thereby ignoring the non-detects and
substitution method. Tests on artificially lefi-censored random data taken from simulated Weibull distribution
indicated that MLE and substitution methods gave smaller RMSE than linear regression method.
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