
BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

4.1 Pengumpulan Data

4.1.1 Gambaran Umum CV Suho Garmindo

CV Suho Garmindo merupakan perusahaan garmen yang memproduksi kerudung dan busana muslim yang dijual dengan *merk* Rabbani. Perusahaan ini memiliki lima pabrik yang berlokasi di Ujung Berung sebagai pusat, Karasak, Perbas, Sayati 1, dan Sayati 2. Dalam struktur kepemilikannya, perusahaan ini bersama dengan *retail* Rabbani dan *Knitting* berada di bawah *Holding Company*. Produk utama dari perusahaan ini adalah kerudung instan, kemeja koko, peci, dresslim, baju anak, mukena, dan sarung. Struktur organisasi pada CV Suho Garmindo ditunjukkan pada gambar 4.1.

Gambar 4.1 Struktur organisasi CV Suho Garmindo Sumber: CV Suho Garmindo

4.1.2 Sistem Produksi

CV Suho Garmindo menerapkan sistem produksi *First Come First Serve* (FCFS) dengan sistem penjahitan secara keseluruhan (*make through*). Penjahitan dengan sistem ini dilakukan dengan dua cara, yaitu:

- Seorang penjahit melakukan penjahitan pada sepotong pakaian dari awal sampai akhir, dan bila perlu pindah ke mesin jahit lain untuk mengerjakan jahitan khusus.
- Untuk jahitan-jahitan tertentu dikerjakan oleh penjahit khusus, misalnya pasang kancing, lubang kancing, obras, dan *bartack* atau *stress*.

Bagian yang diamati adalah bagian produksi *sample*. *Sample* merupakan contoh produk yang dibuat oleh desainer perusahaan. Adapun urutan prosedur pembuatan *sample* adalah sebagai berikut:

Marking

Tahap pertama dalam proses produksi *sample* adalah pembuatan *mark*. *Mark* adalah kertas panjang yang di dalamnya terdapat pola-pola yang disusun sedemikian rupa sehingga didapat penggunaan bahan sehemat mungkin. *Mark* masih dibuat secara manual menggunakan karton dan bantuan alat tulis. Setelah pembuatan *mark*, maka tahap berikutnya adalah pembentangan kain (*spreading*). Kain bahan baku diangkat dan diletakkan di atas penyangga yang ada pada meja dan siap digelar. Di atas meja tersebut dihamparkan kertas yang panjang dan lebarnya sesuai dengan panjang-lebar *mark*. Kain kemudian diratakan dan di atasnya diletakkan *mark*.

Cutting

Setelah *mark* diletakkan di atas kain yang digelar maka kain siap dipotong. Proses pemotongan kain dilakukan secara manual yaitu dengan menggunakan gunting kain. Pada pemotongan pertama, yang dilakukan adalah pemotongan komponen-komponen besar dan juga komponen kecil yang masih berkelompok.

Sewing

Setelah melalui proses *cutting*, dalam setiap potongan kain sudah terdapat penanda/nomor sambungan antara bagian potongan yang satu dengan potongan yang lain. Kain tersebut diberikan ke bagian *sewing* untuk dijahit sesuai dengan penandanya. Kegiatan lain pada bagian *sewing* selain menjahit adalah obras, pemasangan *zipper*, dan pemasangan label karena kegiatan-kegiatan tersebut dilakukan sebagai satu kesatuan menggunakan mesin.

Finishing

Pada bagian ini, produk yang telah selesai dijahit akan diberikan aksesoris bergantung pada jenis aksesoris yang dibutuhkan oleh tiap-tiap produk seperti kancing, payet, pemberian logo border. Kegiatan *finishing* dilakukan secara manual. Selain itu, pada bagian *finishing* dilakukan penyetrikaan terhadap pakaian jadi menggunakan setrika uap.

Apabila produk *sample* telah selesai melalui tahap-tahap tersebut di atas, produk *sample* akan diberikan kepada *merchandiser*. Jika *sample* ditolak oleh *merchandiser*, maka *sample* akan dikembalikan ke bagian pembuatan *sample* untuk diperbaiki atau dibuat ulang sesuai dengan mutu sample yang dikehendaki. Jika *sample* diterima oleh *merchandiser*, maka *sample* tersebut akan dikirim oleh *merchandiser* ke bagian produksi untuk diproduksi secara massal.

Produk *sample* diproduksi untuk memenuhi permintaan selama tiga bulan. Karena setiap tiga bulan, perusahaan melakukan inovasi terhadap desain-desain produknya sehingga produksi selalu mengalami perubahan dalam jangka waktu tiga bulan. Permintaan (*demand*) yang ditentukan oleh perusahaan didapatkan berdasarkan intuisi. Untuk memproduksi produk-produknya, perusahaan melakukan penjadwalan menggunakan metode *First Come First Serve* (FCFS).

4.1.3 Hari Kerja

CV Suho Garmindo Bandung beroperasi setiap hari senin sampai dengan sabtu dengan jam kerja sebagai berikut:

Hari : Senin-Jum'at

Waktu : 08.00-16.00, istirahat 12.00-13.00

Hari : Sabtu

Waktu : 08.00-12.00

Diasumsikan bahwa satu bulan terdiri dari 24 hari kerja efektif. Tidak ada ketentuan jam lembur pada CV Suho Garmindo. Perusahaan garmen ini menerapkan jam lembur (*over time*) ketika mendekati *due date* produksi.

4.1.4 *Demand*

Produk yang diproduksi oleh CV Suho Garmindo Bandung adalah tiga produk terbaru yang dikeluarkan, yaitu dresslim, kemeja koko, dan kerudung. Demand didapatkan dengan menggunakan metode peramalan kualitatif karena data historis tidak tersedia. Adapun *demand* untuk masing-masing produk untuk tiga periode (bulan Mei-bulan Juli 2014) dapat dilihat pada tabel 4.1.

Tabel 4.1 Demand untuk ketiga produk yang diamati

Periode	Dresslim	Kemeja Koko	Kerudung
1	85	50	155
2	80	60	145
3	100	75	180
Total	265	185	480

4.1.5 Waktu Proses

Proses produksi setiap produk adalah sama, yaitu dengan melalui *marking*, *cutting*, *sewing*, dan *finishing*. Masing-masing waktu proses pada pembuatan setiap produk dapat dilihat pada tabel 4.2 sampai tabel 4.4.

Tabel 4.2 Waktu proses produksi dresslim (menit)

Pengamatan Ke-	Marking	Cutting	Sewing	Finishing
1	26,42	20,60	56,13	31,23
2	26,08	21,67	58,20	31,50
3	27,53	21,88	58,88	31,73
4	27,83	22,08	59,30	31,15
5	28,30	22,42	59,97	31,88
6	28,35	21,90	58,73	32,05
7	27,91	22,20	58,90	31,88
8	28,20	22,35	59,62	31,60
9	28,27	21,75	59,50	32,18
10	27,99	21,80	57,29	32,20

Tabel 4.3 Waktu proses produksi kemeja koko (menit)

Pengamatan Ke-	Marking	Cutting	Sewing	Finishing
1	8,67	7,37	40,63	5,93
2	7,62	7,85	41,33	6,08
3	7,93	8,17	42,42	5,83
4	8,68	7,10	41,95	5,83
5	8,75	7,25	42,42	5,90
6	8,11	8,20	42,10	6,10
7	7,80	8,03	40,85	6,05

Tabel 4.4 Waktu proses produksi kerudung (menit)

Pengamatan Ke-	Marking	Cutting	Sewing	Finishing
1	9,18	9,15	13,28	1,40
2	9,30	11,23	13,53	1,50
3	9,68	10,40	14,03	1,53
4	10,11	10,17	13,78	1,58
5	10,05	10,43	13,75	1,57
6	8,92	9,47	14,50	1,70
7	10,44	9,52	14,91	1,58
8	9,31	10,13	13,75	1,41
9	8,80	11,40	15,01	1,39
10	9,44	9,70	13,02	1,75
11	9,12	9,81	13,77	1,63
12	9,05	10,21	12,90	1,59
13	10,20	10,04	14,32	1,40

Lanjutan Tabel 4.4 Waktu proses produksi kerudung (menit)

Pengamatan Ke-	Marking	Cutting	Sewing	Finishing
14	9,11	9,77	14,25	1,44
15	9,23	9,80	14,80	1,32
16	9,22	10,11	14,60	1,49
17	9,00	10,00	14,20	1,53
18	10,53	10,54	13,79	1,72
19	8,92	10,42	14,04	1,79
20	10,25	8,50	14,59	1,27

4.1.6 Faktor Penyesuaian dan Faktor Kelonggaran

Faktor penyesuaian dan faktor kelonggaran ditentukan pada saat mengamati kinerja operator pada setiap stasiun kerja. Faktor penyesuaian digunakan untuk menghitung waktu normal sedangkan faktor kelonggaran digunakan untuk menghitung waktu baku. Kedua faktor tersebut dapat dilihat pada tabel 4.5 dan tabel 4.6.

Tabel 4.5 Faktor penyesuaian pada operator

Na	CV	Keterampilan		Usaha		Kondisi Kerja		Konsistensi	
No	SK	L	P	L	P	L	P	L	P
1	Marking	C1	0,06	C2	0,02	D	0	С	0,01
2	Cutting	D	0	D	0	D	0	D	0
3	Sewing	D	0	C2	0,02	D	0	D	0
4	Finishing	C1	0,06	D	0	C	0,02	С	0,01

Tabel 4.6 Faktor kelonggaran pada operator

No	Faktor	Marking (%)	Cutting (%)	Sewing (%)	Finishing (%)
1	Tenaga	6	6	2	6
2	Sikap Kerja	1		1	1
3	Gerakan Kerja	2	2	2	2
4	Kelelahan Mata	6	6	12	8
5	Suhu	3	3	3	3
6	Atmosfer	0	0	0	0
7	Lingkungan	0	0	0	0
	Total	18	18	20	20

4.1.7 Harga Raw Material dan Harga Jual

Adapun harga *raw material* yang digunakan dalam pembuatan masing-masing produk beserta harganya dapat dilihat pada tabel 4.7.

Tabel 4.7 Harga raw material dan harga jual

Jenis Produk	Nama Bahan	Kebutuhan Bahan	Harga Bahan	Harga Jual	
	Kain PE 20s Combed 20s	0,42 kg	100000/kg		
10	Vinex	1,93 kg	90000/kg		
100	Benang	2 cone	6000/cone		
Dresslim	Kancing	4 pcs	800/pc	309500	
1000	Zipper	1 pc	4000/pc		
10 6	Label	1 pc	500/pc	M	
	Payet	2 pack	15000/pack		
	Kain Songket	0,79	200000/kg		
Kemeja	Benang	1	6000/cone	199900	
Koko	Kancing	8	800/pc	199900	
	Label	1	500/pc		
-	Kain PE 20s	0,35	100000/kg		
Kerudung	Benang	1	6000/cone	54500	
Kerudung	Kancing	1	800/pc	34300	
	Label	1	500/pc		

4.2 Pengolahan Data

Pengolahan data yang dilakukan sesuai dengan empat dari lima langkah penerapan TOC, yaitu identifikasi *constraint*, eksploitasi *constraint*, subordinasi sumber lainnya, dan elevasi *constraint*.

4.2.1 Identifikasi Constraint

Identifikasi *constraint* dimaksudkan untuk mengetahui letak sumber *constraint* dan penyebabnya. Langkah yang dilakukan dalam identifikasi *constraint* adalah menghitung waktu baku, menghitung beban kerja dan kapasitas yang dibutuhkan, dan penentuan stasiun *bottleneck*.

4.2.1.1 Perhitungan Waktu Baku

Sebelum melakukan perhitungan waktu baku, langkah yang harus dilakukan adalah menguji keseragaman dan kecukupan data waktu proses yang telah diamati. Uji keseragaman dan kecukupan data dilakukan untuk mengetahui fluktuasi setiap waktu proses yang diperoleh melalui pengukuran waktu jam henti terhadap semua stasiun kerja pada setiap produk yang diteliti. Data untuk waktu proses *marking* pada dresslim dapat dilihat pada tabel 4.8.

Tabel 4.8 Waktu proses marking dresslim

Pegamatan Ke-	1	2	3	4	5	6	7	8	9	10
Marking	26,42	26,08	27,53	27,83	28,30	28,35	27,91	28,20	28,27	27,99

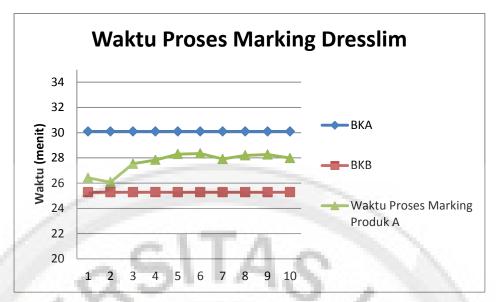
Adapun langkah-langkah dalam uji keseragaman dan kecukupan data adalah sebagai berikut:

1. Menghitung rata-rata waktu operasi dan standar deviasi

$$\Sigma X = 276,88$$
 menit

$$\overline{X} = \frac{\sum X}{n}$$

$$\overline{X} = \frac{276,88}{10} = 27,69 \text{ menit}$$


$$\sigma = \sqrt{\frac{\sum (X_j - \overline{X})^2}{n-1}}$$

$$\sigma = \sqrt{\frac{(26,42-27,69)^2 + (26,08-27,69)^2 + (27,53-27,69)^2 + (27,83-27,69)^2 + (28,30-27,69)^2 + (28,35-27,69)^2 + (27,91-27,69)^2 + (28,20-27,69)^2 + (28,27-27,69)^2 + (27,99-27,69)^2}{10-1}} = 0,80$$

2. Uji keseragaman data

BKA =
$$\overline{X} + 3\sigma$$

BKA = 27,69 + 3(0,80) = 30,09
BKB = $\overline{X} - 3\sigma$
BKB = 27,69 - 3(0,80) = 25,28

Bedasarkan nilai batas kelas atas (BKA) dan batas kelas bawah (BKB) yang telah dihitung, maka dapat dibuat grafik uji keseragaman data seperti pada gambar 4.2.

Gambar 4.2 Uji keseragaman data waktu proses *marking* dresslim Dari gambar 4.2 dapat diketahui bahwa dari kesepuluh data yang telah diambil tidak terdapat data ekstrim atau data yang *out of control*. Maka kesepuluh data tersebut dapat diolah ke langkah selanjutnya yaitu uji kecukupan data.

3. Uji kecukupan data

$$N' = \left(\frac{40\sqrt{N.\sum X^2_j - (\sum X_j)^2}}{\sum X_j}\right)^2 = \left(\frac{40\sqrt{10(7672,05) - (276,88)^2}}{276,88}\right)^2 = 1,21$$

Dari uji kecukupan data dapat dilihat bahwa nilai N' yaitu sebesar 1,21. Data dikatakan cukup apabila N>N'. N adalah jumlah pengamatan. Jumlah pengamatan yang telah dilakukan yaitu 10. Maka 10>1,21, sehingga data pengamatan telah mencukupi dan dapat mewakili sampel.

Rekapitulasi dari uji keseragaman dan kecukupan data yang dilakukan pada setiap waktu proses yang ditampilkan pada tabel 4.2 sampai dengan 4.4 dalam pembuatan produk dapat dilihat pada tabel 4.9.

Tabel 4.9 Rekapitulasi uji keseragaman dan kecukupan data

Jenis Produk	Stasiun Kerja	N	$\sum X_j$	X	σ	BKA	вкв	N'	Seragam (BKB<\bar{X} <bka)< th=""><th>Cukup (N'<n)< th=""></n)<></th></bka)<>	Cukup (N' <n)< th=""></n)<>
	Marking	10	276,88	27,69	0,80	30,09	25,28	1,21	Seragam	Cukup
Dresslim	Cutting	10	218,65	21,87	0,51	23,40	20,33	0,79	Seragam	Cukup
Diessiiii	Sewing	10	586,52	58,65	1,17	62,17	55,14	0,57	Seragam	Cukup
	Finishing	10	317,40	31,74	0,37	32,85	30,63	0,19	Seragam	Cukup
	Marking	7	57,56	8,22	0,47	9,63	6,81	4,49	Seragam	Cukup
Kemeja	Cutting	7	53,97	7,71	0,46	9,09	6,33	4,89	Seragam	Cukup
Koko	Sewing	7	291,70	41,67	0,74	43,88	39,46	0,43	Seragam	Cukup
	Finishing	7	41,72	5,96	0,12	6,31	5,61	0,52	Seragam	Cukup
	Marking	20	189,86	9,49	0,56	11,17	7,81	5,28	Seragam	Cukup
Vamiduna	Cutting	20	200,80	10,04	0,65	11,99	8,09	6,40	Seragam	Cukup
Kerudung	Sewing	20	280,82	14,04	0,60	15,84	12,25	2,76	Seragam	Cukup
111	Finishing	20	30,59	1,53	0,14	1,96	1,10	13,38	Seragam	Cukup

Dari tabel 4.9, dapat dilihat bahwa dari semua waktu proses yang diambil, tidak terdapat data yang ekstrim atau *out of control*. Data-data tersebut juga telah memenuhi kecukupan dan mewakili sampel sehingga data-data tersebut dapat digunakan dalam perhitungan waktu baku.

Waktu baku merupakan waktu yang dibutuhkan secara wajar oleh pekerja normal dalam kondisi yang wajar dan kemampuan yang rata-rata. Untuk menghitung waktu baku diperlukan beberapa tahap, yaitu menghitung waktu siklus dan menghitung waktu normal terlebih dahulu.

Waktu siklus untuk stasiun kerja marking pada pembuatan dresslim adalah:

WS =
$$\frac{\sum X}{n} = \frac{276,88}{10} = 27,69$$
 menit

Waktu normal untuk stasiun kerja *marking* pada pembuatan dresslim adalah:

$$WN = WSxP = 27,69x1,09 = 30,18 \text{ menit}$$

Waktu baku untuk stasiun kerja *marking* pada pembuatan dresslim adalah:

$$WB = WN + L(WN) = 30,18 + 0,18(30,18) = 35,61 \text{ menit}$$

Rekapitulasi untuk hasil perhitungan waktu siklus, waktu normal, dan waktu baku untuk setiap proses pada pembuatan masing-masing produk dapat dilihat pada tabel 4.10.

Tabel 4.10 Waktu siklus, waktu normal, dan waktu baku

Produk	Stasiun Kerja	WS	P	WN	L	WB
	Marking	27,69	1,09	30,18	0,18	35,61
Dresslim	Cutting	21,87	1,00	21,87	0,18	25,80
Diessiiii	Sewing	58,65	1,02	59,83	0,20	71,79
	Finishing	31,74	1,09	34,60	0,20	41,52
	Marking	8,22	1,09	8,96	0,18	10,58
Kemeja	Cutting	7,71	1,00	7,71	0,18	9,10
Koko	Sewing	41,67	1,02	42,50	0,20	51,01
100	Finishing	5,96	1,09	6,50	0,20	7,80
1 10	Marking	9,49	1,09	10,35	0,18	12,21
Kerudung	Cutting	10,04	1,00	10,04	0,18	11,85
Kerudung	Sewing	14,04	1,02	14,32	0,20	17,19
4.7	Finishing	1,53	1,09	1,67	0,20	2,00

4.2.1.2 Perhitungan Beban Kerja dan Kapasitas yang Dibutuhkan

Dalam upaya untuk memenuhi jumlah *demand* selama tiga bulan, perusahaan harus mengetahui jumlah kapasitas yang dibutuhkan dalam satuan menit. Kapasitas yang dibutuhkan dapat diketahui dengan menghitung beban kerja pada masing-masing stasiun kerja dalam setiap produk dengan cara mengalikan waktu baku dengan *demand* yang harus dipenuhi.

Beban kerja = waktu baku x demand(4.1)
Perhitungan beban kerja stasiun kerja *marking* pada setiap produk adalah sebagai berikut:

Beban kerja *marking* dresslim $= 35,61 \times 265 = 9437,26$ menit Beban kerja *marking* kemeja koko $= 10,58 \times 185 = 1956,60$ menit Beban kerja *marking* kerudung $= 12,21 \times 480 = 5860,75$ menit Total beban kerja *marking* = 17254,62 menit

Rekapitulasi dari beban kerja dan kapasitas yang dibutuhkan oleh setiap stasiun kerja dapat dilihat pada tabel 4.11.

Tabel 4.11 Kapasitas yang dibutuhkan

Stasiun Kerja	Beban Kerja Beban Kerja Beban Kerja Dresslim Kemeja Koko Kerudung		•	Kapasitas yang dibutuhkan
Marking	9437,26	1956,60	5860,75	17254,62
Cutting	6837,19	1683,09	5686,66	14206,93
Sewing	19024,36	9436,08	8249,37	36709,81
Finishing	11001,72	1442,20	960,28	13404,20

Dati tabel 4.11 dapat dilihat bahwa kapasitas yang paling banyak dibutuhkan adalah pada stasiun kerja *sewing* yang jumlahnya lebih besar 2 kali lipat dari stasiun kerja lainnya.

4.2.1.3 Penentuan Stasiun Bottleneck

Apabila operator memiliki kecepatan kerja yang tidak konsisten dan jumlah mesin yang digunakan terbatas, maka produk yang dihasilkan setiap waktunya akan terbatas dan tidak konsisten pula. Kemungkinannya, perusahaan tidak dapat memenuhi demand. Sehingga kedua hal tersebut merupakan sumber bottleneck bagi perusahaan. Setiap sumber bottleneck merupakan sumber constraint karena termasuk penghambat perusahaan mencapai tujuan utamanya yaitu menghasilkan throughput optimal. Bottleneck pada stasiun kerja dapat diidentifikasi dengan mengetahui beban yang dialami masing-masing stasiun kerja dalam bertuk persentase. Beban dihitung dengan cara sebagai berikut:

$$Beban = \frac{Kebutuhan kapasitas}{Kapasitas tersedia} x 100\%$$
 (4.2)

Kapasitas tersedia dapat diketahui dari data hari kerja yang dikonversi ke dalam satuan menit untuk memenuhi *demand*.

Kapasitas yang tersedia dalam tiga bulan =
$$(3x4x5x7x60) + (3x4x1x4x60)$$

= 28.080 menit

Beban stasiun kerja *marking* yaitu:

Beban stasiun kerja marking =
$$\frac{17254,62}{28080,00}$$
 x100% = 61,45%

Rekapitulasi beban kerja dari setiap stasiun kerja dapat dilihat pada tabel 4.12.

Tabel 4.12 Penentuan stasiun bottleneck

Stasiun Kerja	Kapasitas Tersedia	Kebutuhan Kapasitas	Beban (%)	Keterangan
Marking	28080	17254,62	61,45	Non Bottleneck
Cutting	28080	14206,93	50,59	Non Bottleneck
Sewing	28080	36709,81	130,73	Bottleneck
Finishing	28080	13404,20	47,74	Non Bottleneck

Dari tabel 4.12 dapat dilihat bahwa terdapat satu stasiun kerja yang memiliki beban lebih besar dari 100% yaitu stasiun kerja *sewing*. Dengan kondisi tersebut, stasiun kerja *sewing* tidak dapat memenuhi *demand* yang telah dibebankan pada perusahaan karena kapasitas yang tersedia tidak mencukupi kapasitas yang dibutuhkan. Stasiun kerja tersebut, yaitu *sewing*, merupakan *bottleneck* yang juga merupakan *constraint* bagi perusahaan.

4.2.2 Eksploitasi Constraint

Pada eksploitasi *constraint* dilakukan penentuan kontribusi produk, perhitungan volume produksi optimal menggunakan *Linear programming*, dan perhitungan beban kerja optimal.

4.2.2.1 Penentuan Kontribusi Produk

Dalam mengeksploitasi *constaint*, langkah pertama yang harus dilakukan adalah menghitung kontribusi masing-masing produk. Adapun perhitungan ongkos bahan untuk masing-masing produk adalah sebagai berikut:

Ongkos bahan dresslim

- = 0,42 kg kain PE 20s combed 20s + 1,93 kg kain vinex + 2 cone benang + 4 pcs kancing + 1 pc zipper + 1 pc label + 2 pack payet
- = 0,42 (Rp 100.000) + 1,93 (Rp 90.000) + 2 (Rp 6.000) + 4 (Rp 800) + 1 (Rp 4.000) + 1 (Rp 500) + 2 (Rp 15.000)
- = Rp 42.000 + Rp 173.700 + Rp 12.000 + Rp3.200 + Rp 4.000 + Rp 500 + Rp 30.000
- = Rp 265.400

Menurut Horngren, Datar, dan Foster (2009) kontribusi dapat dihitung dari harga jual dikurangi biaya bahan baku/ongkos bahan. Perhitungan untuk kontribusi per unit masing-masing produk adalah sebagai berikut:

Kontribusi per unit produk = Harga jual – Ongkos bahan Kontribusi per unit dresslim = Rp 309.500 – Rp 265.400 = Rp 44.100 Kontribusi per unit kemeja koko = Rp 199.900 – Rp 170.900 = Rp 29.000 Kontribusi per unit kerudung = Rp 54.500 – Rp 42.300 = Rp 12.200

Kontribusi per unit pada sumber *constraint* untuk masing-masing produk pun harus diketahui.

Kontribusi per unit dresslim pada stasiun kerja sewing

$$= \text{Rp } 44.100 / 71,79 = \text{Rp } 614,29/\text{menit}$$

Kontribusi per unit kemeja koko pada stasiun kerja sewing

$$= Rp 29.000 / 51,01 = Rp 568,56/menit$$

Kontribusi per unit kerudung pada stasiun kerja sewing

Kontribusi per unit pada sumber *constraint* menunjukkan bahwa lebih baik hanya memproduksi dan menjual produk kerudung karena menghasilkan kontribusi per unit dari sumber *constraint* lebih tinggi dibanding produk dresslim maupun kemeja koko. Meskipun kontribusi per unit produk dresslim dan kemeja koko lebih besar dari kontribusi per unit produk kerudung, kontribusi per unit produk bukanlah hal yang sangat penting, melainkan kontribusi per unit dari sumber *constraint* adalah faktor yang menentukan sejauh mana perusahaan dapat mengoptimalkan kinerja dari sumber *constraint*.

4.2.2.2 Perhitungan Volume Produksi Optimal Menggunakan *Linear***Programming**

Langkah selanjutnya dalam mengeksploitasi *constraint* adalah dengan memanfaatkan sumber *constraint* secara optimal tanpa mengeluarkan investasi tetapi dengan tetap menghasilkan *throughput* maksimal. Maka dari itu, perlu diketahui volume produksi dengan nilai *throughput* optimal menggunakan *Linear Programming* pada *software* Win QSB *version* 2.0. Untuk itu, fungsi tujuan dan batasan-batasan kapasitas dimiliki oleh perusahaan dalam memproduksi produk sesuai dengan permintaan (*demand*) harus ditentukan terlebih dahulu.

Variabel:

X1 = Dresslim

X2 = Kemeja Koko

X3 = Kerudung

Fungsi tujuan:

Maksimasi kontribusi per unit

Maksimasi Z = 44100 X1 + 29000 X2 + 12200 X3

Batasan:

1. Kapasitas stasiun kerja

Marking: $35,61 \text{ X}1 + 10,58 \text{ X}2 + 12,21 \text{ X}3 \le 28.080$ Cutting: $25,80 \text{ X}1 + 9,10 \text{ X}2 + 11,85 \text{ X}3 \le 28.080$ Sewing: $71,79 \text{ X}1 + 51,01 \text{ X}2 + 17,19 \text{ X}3 \le 28.080$ Finishing: $41,52 \text{ X}1 + 7,80 \text{ X}2 + 2,00 \text{ X}3 \le 28.080$

2. Demand

X1 < 265

 $X2 \le 185$

 $X3 \le 480$

3. $X1, X2, X3 \ge 0$

Dengan menggunakan *software* Win QSB ver 2.0 modul *linear programming*, maka didapatkan hasil seperti pada tabel 4.13.

Tabel 4.13 Hasil linear programming menggunakan software WinQSB ver 2.0

Decision Variable	Solution Value	Unit Cost or Profit c(j)	Total Contribution	Reduced Cost	Basis Status	Allowable Min. c(j)	Allowable Max. c(j)
X1	265,00	44.100	11.686.500	0	Basic	40.813,77	M
X2	15,77	29.000	457.342	0	Basic	0,00	31.335,02
X3	480,00	12.200	5.856.000	0	Basic	9.772,79	M
Object Func		(Max.) =	17.999.840	2.4			
Constraint	Left Hand Side	Direction	Right Hand Side	Slack or Surplus	Shadow Price	Allowable Min. RHS	Allowable Max. RHS
C1	15.464,30	<=	28.080	12.615,70	0	15.464,30	M
C2	12.668,51	<=	28.080	15.411,49	0	12.668,51	M
C3		,	20.000	13.711,7	U	12.000,51	1V1
CS	28.080,00	<=	28.080	0	569	27.275,55	36.712,40
C4	28.080,00 12.085,81						
		<=	28.080	0	569	27.275,55	36.712,40
C4	12.085,81	<= <=	28.080 28.080	0 15.994,19	569	27.275,55 12.085,81	36.712,40 M

Slack surplus menandakan sisa waktu yang dimiliki setiap stasiun kerja. Shadow price menandakan ada atau tidaknya penambahan atau pengurangan waktu. Allowable max RHS menandakan berapa besar batasan dapat dinaikkan sedangkan allowable min RHS menandakan berapa besar batasan dapat diturunkan.

Berdasarkan hasil perhitungan *linear programming* pada tabel 4.13, dapat dilihat bahwa solusi untuk mencapai *throughput* maksimal adalah dengan memproduksi dresslim sebanyak 265 pcs, kemeja koko sebanyak 15,77 pcs, dan kerudung sebanyak 480 pcs dengan nilai keuntungan sebesar Rp 17.999.840. Jumlah produksi tersebut sesuai dengan hasil yang ditunjukkan perhitungan kontribusi per menit pada sumber *constraint* bahwa sebaiknya perusahaan mengoptimalkan produksi kerudung.

4.2.2.3 Perhitungan Utilitas

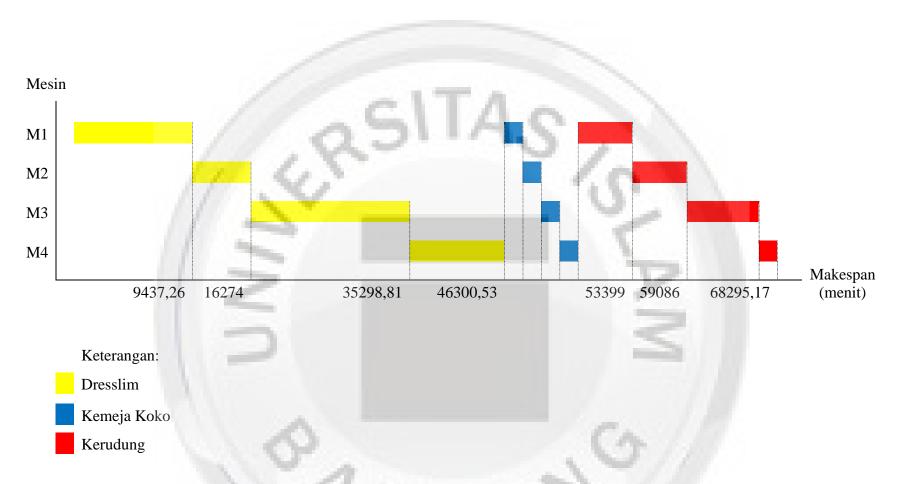
Dengan memproduksi sesuai dengan jumlah yang tertera, perhitungan beban kerja optimal stasiun kerja *marking* adalah sebagai berikut:

Beban kerja dresslim = $35,61 \times 265$ = 9437,26 menit Beban kerja kemeja koko = $10,58 \times 15,77$ = 166,79 menit

Beban kerja kerudung = $12,21 \times 480 = 5860,75$ menit

Total beban kerja = 15464,80 menit

Rekapitulasi beban kerja optimal yang dibebankan pada setiap stasiun kerja dapat dilihat pada tabel 4.14.


Kapasitas Stasiun Kemeja Dresslim Kerudung Beban % Kerja Koko Tersedia Marking 9437,26 166,79 5860,75 15464,80 28080 55,07 143,48 Cutting 6837,19 5686,66 12667,32 28080 45,11 99.99 Sewing 19024,36 804,38 8249,37 28078,11 28080 Finishing 11001,72 122,94 960,28 12084,94 28080 43,04

Tabel 4.14 Utilitas stasiun kerja

Dari tabel 4.14, dapat dilihat bahwa persentase beban yang dimiliki berubah, khususnya pada stasiun kerja *sewing*. Eksploitasi yang dilakukan terhadap *constraint* adalah dengan memanfaatkan sumber *constraint* secara optimal. Dapat dilihat bahwa pada stasiun kerja *sewing* besar utilitasnya mencapai 99,99%.

4.2.3 Subordinasi Sumber Lainnya

Setelah mengetahui bahwa hasil eksploitasi constraint menghasilkan kapasitas optimal dengan memproduksi dresslim sebanyak 265 pcs, kemeja koko sebanyak 15,77 pcs, dan kerudung sebanyak 480 pcs, hal lain yang harus diperhatikan adalah penjadwalan. CV. Suho Garmindo Bandung menerapkan metode *First Come First Serve* (FCFS) pada lot per lini produksi bukan pada lot per mesin. Untuk memenuhi kapasitas produksi dengan jumlah produksi, *gantt chart* penjadwalan dapat dilihat pada gambar 4.4.

Gambar 4.3 Gantt chart job scheduling kapasitas optimal dengan metode First Come First Serve (FCFS)

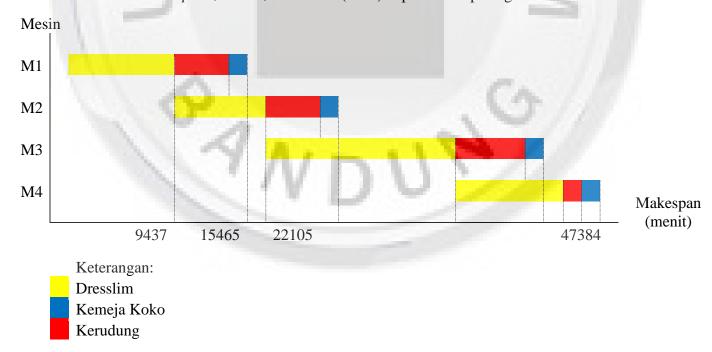
Dari gambar 4.3 dapat diketahui bahwa *makespan* yang dibutuhkan untuk memproduksi produk dengan kapasitas optimal dari stasiun kerja *sewing* adalah 68295,17 menit. Sedangkan kapasitas produksi yang dimiliki perusahaan adalah 28080 menit. Sehingga dibutuhkan tambahan waktu sebanyak 40215,17 menit. Karena kekurangan waktu yang dimilikilah, hal ini menjadi *constraint* karena menghambat perusahaan untuk memperoleh *throughput* optimal.

4.2.4 Elevasi Constraint

Elevasi *constraint* dimaksudkan untuk mengangkat atau menghilangkan *constraint*. Hal yang dilakukan adalah melakukan dua jenis penjadwalan, yaitu penjadwalan *batch* proses sama dengan *batch* transfer dan penjadwalan *batch* proses tidak sama dengan *batch* transfer.

4.2.4.1 Penjadwalan Batch Proses Sama dengan Batch Transfer

Untuk mengeksploitasi *constraint* baru yang ditimbulkan oleh penjadwalan, dilakukan penjadwalan ulang menggunakan metode *Campbell*, *Dudek*, *and Smith* (CDS). Metode CDS merupakan pengembangan dari metode Johnson, dimana setiap job yang akan dikerjakan harus melalui proses masing- masing mesin. Penjadwalan dilakukan demi mendapatkan *maskespan* terkecil yang menjadi urutan pengerjaan paling baik. Metode CDS dilakukan dengan bantuan *software* Win QSB *version* 2.0 modul *Job Scheduling* seperti pada tabel 4.15.


Tabel 4.15 Job scheduling menggunakan metode Campbell, Dudek, and Smith (CDS)

	Job Schedule									
	Job	Operation	On Machine	Process Time	Start Time	Finish Time				
1	Job 1	1	Machine 1	9437,26	0	9437,26				
2	Job 1	2	Machine 2	6837,19	9437,26	16274,45				
3	Job 1	3	Machine 3	19024,36	16274,45	35298,81				
4	Job 1	4	Machine 4	11001,72	35298,81	46300,53				
5	Job 2	1	Machine 1	166,79	15298,01	15464,8				
6	Job 2	2	Machine 2	143,48	21961,11	22104,59				
7	Job 2	3	Machine 3	804,38	43548,18	44352,56				
8	Job 2	4	Machine 4	122,94	47260,81	47383,75				

Lanjutan Tabel 4.15 *Job scheduling* menggunakan metode *Campbell, Dudek, and Smith* (CDS)

	Job Schedule								
	Job	Operation	On Machine	Process Time	Start Time	Finish Time			
9	Job 3	1	Machine 1	5860,75	9437,26	15298,01			
10	Job 3	2	Machine 2	5686,66	16274,45	21961,11			
11	Job 3	3	Machine 3	8249,37	35298,81	43548,18			
12	Job 3	4	Machine 4	960,28	46300,53	47260,81			
	Cmax =	47383,75	MC =	46981,7	Wmax =	46146,16			
	MW =	24216,63	Fmax =	47383,75	MF =	46981,7			
	Lmax =	47383,75	ML =	46981,7	Emax =	0			
(3)	ME =	0	Tmax =	47383,75	MT =	46981,7			
100	NT =	3	WIP =	2,9745	MU =	0,3603			
	TJC =	0	TMC =	0	TC =	0			
	Solved by	CDS			Criterion:	Cmax			

Urutan penjadwalan produksi adalah Job 1 (Dresslim), Job 3 (Kerudung), lalu Job 2 (Kemeja koko). *Gantt chart* dari hasil *job scheduling* menggunakan metode *Campbell*, *Dudek*, *and Smith* (CDS) dapat dilihat pada gambar 4.4.

Gambar 4.4 *Gantt chart job scheduling* dengan metode *Campbell, Dudek, and Smith* (CDS)

Dari gambar 4.4 dapat dilihat bahwa jadwal tersebut adalah jadwal produksi dengan *makespan* sebesar 47383,75 menit. Waktu *makespan* menurun sebesar 20911,42 menit. Dengan kata lain, setiap operator dari masing-masing stasiun kerja harus menyesuaikan dengan kondisi kerja yang ketat dan mentaati jadwal agar mencapai target produksi. Namun, dengan kebutuhan *makespan* sebesar 47383,75 menit, *constraint* belum hilang karena kapasitas yang dibutuhkan melebihi dengan kapasitas yang dimiliki.

4.2.4.2 Penjadwalan Batch Proses Tidak Sama dengan Batch Transfer

Salah satu cara agar makespan dapat diminimasi adalah dengan melakukan penjadwalan *batch* proses tidak sama dengan *batch* transfer. Masing-masing produk dibagi ke dalam beberapa *batch* dengan proses yang berurutan, namun produk tersebut harus ditransfer atau dipindahkan ke stasiun berikutnya sesuai dengan jumlah unit yang terdapat dalam 1 *batch*. Penjadwalan dengan penerapan *batch* proses tidak sama dengan *batch* transfer ini dilakukan dengan menggunakan metode yang sama, yaitu metode CDS. Setelah melakukan pembagian *batch* dari 2 *batch* sampai ke 15 *batch*, diperoleh makespan terkecil yaitu pada 15 *batch*. Penentuan jumlah *batch* dilihat dari produk yang paling sedikit diproduksi, yaitu kemeja koko yang hanya berjumlah 15,22 pcs saja. Penjadwalan dengan 15 *batch* dapat dilihat pada tabel 4.16.

Tabel 4.16 Job scheduling terpilih dengan 15 batch

100	Job Schedule								
- 19	Job	Operation	On Machine	Process Time	Start Time	Finish Time			
1	Job 1	1	Machine 1	629,15	166,8	795,95			
2	Job 1	2	Machine 2	455,81	795,95	1251,76			
3	Job 1	3	Machine 3	1268,29	1251,76	2520,05			
4	Job 1	4	Machine 4	733,45	2520,05	3253,5			
5	Job 2	1	Machine 1	629,15	795,95	1425,1			
6	Job 2	2	Machine 2	455,81	1425,1	1880,91			
7	Job 2	3	Machine 3	1268,29	2520,05	3788,34			
8	Job 2	4	Machine 4	733,45	3788,34	4521,79			
9	Job 3	1	Machine 1	629,15	1425,1	2054,25			
10	Job 3	2	Machine 2	455,81	2054,25	2510,06			

Lanjutan Tabel 4.16 Job scheduling terpilih dengan 15 batch

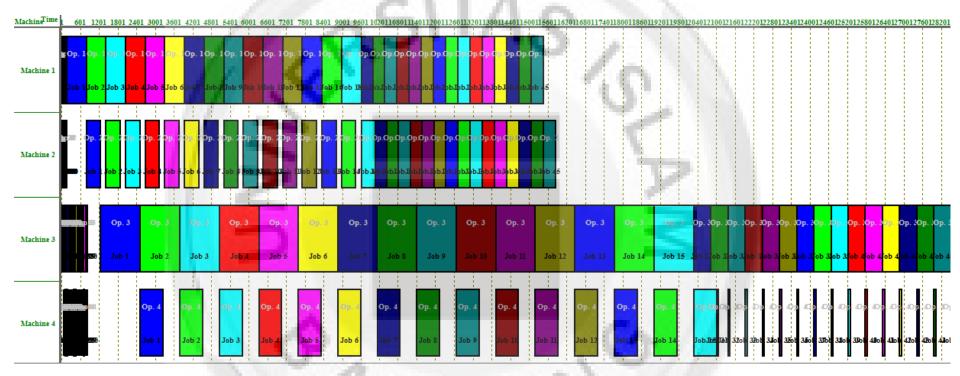
	Job Schedule						
	Job	Operation	On Machine	Process Time	Start Time	Finish Time	
11	Job 3	3	Machine 3	1268,29	3788,34	5056,63	
12	Job 3	4	Machine 4	733,45	5056,63	5790,08	
13	Job 4	1	Machine 1	629,15	2054,25	2683,4	
14	Job 4	2	Machine 2	455,81	2683,4	3139,21	
15	Job 4	3	Machine 3	1268,29	5056,63	6324,92	
16	Job 4	4	Machine 4	733,45	6324,92	7058,37	
17	Job 5	1	Machine 1	629,15	2683,4	3312,55	
18	Job 5	2	Machine 2	455,81	3312,55	3768,36	
19	Job 5	3	Machine 3	1268,29	6324,92	7593,21	
20	Job 5	4	Machine 4	733,45	7593,21	8326,66	
21	Job 6	1	Machine 1	629,15	3312,55	3941,7	
22	Job 6	2	Machine 2	455,81	3941,7	4397,51	
23	Job 6	3	Machine 3	1268,29	7593,21	8861,5	
24	Job 6	4	Machine 4	733,45	8861,5	9594,95	
25	Job 7	1	Machine 1	629,15	3941,7	4570,85	
26	Job 7	2	Machine 2	455,81	4570,85	5026,66	
27	Job 7	3	Machine 3	1268,29	8861,5	10129,79	
28	Job 7	4	Machine 4	733,45	10129,79	10863,24	
29	Job 8	1	Machine 1	629,15	4570,85	5200	
30	Job 8	2	Machine 2	455,81	5200	5655,81	
31	Job 8	3	Machine 3	1268,29	10129,79	11398,08	
32	Job 8	4	Machine 4	733,45	11398,08	12131,53	
33	Job 9	1	Machine 1	629,15	5200	5829,149	
34	Job 9	2	Machine 2	455,81	5829,149	6284,959	
35	Job 9	3	Machine 3	1268,29	11398,08	12666,37	
36	Job 9	4	Machine 4	733,45	12666,37	13399,82	
37	Job 10	1	Machine 1	629,15	5829,149	6458,299	
38	Job 10	2	Machine 2	455,81	6458,299	6914,109	
39	Job 10	3	Machine 3	1268,29	12666,37	13934,66	
40	Job 10	4	Machine 4	733,45	13934,66	14668,11	
41	Job 11	1	Machine 1	629,15	6458,299	7087,449	
42	Job 11	2	Machine 2	455,81	7087,449	7543,259	
43	Job 11	3	Machine 3	1268,29	13934,66	15202,95	
44	Job 11	4	Machine 4	733,45	15202,95	15936,4	
45	Job 12	1	Machine 1	629,15	7087,449	7716,599	
46	Job 12	2	Machine 2	455,81	7716,599	8172,409	

Lanjutan Tabel 4.16 Job scheduling terpilih dengan 15 batch

	Job Schedule						
	Job	Operation	On Machine	Process Time	Start Time	Finish Time	
47	Job 12	3	Machine 3	1268,29	15202,95	16471,24	
48	Job 12	4	Machine 4	733,45	16471,24	17204,69	
49	Job 13	1	Machine 1	629,15	7716,599	8345,749	
50	Job 13	2	Machine 2	455,81	8345,749	8801,559	
51	Job 13	3	Machine 3	1268,29	16471,24	17739,53	
52	Job 13	4	Machine 4	733,45	17739,53	18472,98	
53	Job 14	1	Machine 1	629,15	8345,749	8974,899	
54	Job 14	2	Machine 2	455,81	8974,899	9430,709	
55	Job 14	3	Machine 3	1268,29	17739,53	19007,82	
56	Job 14	4	Machine 4	733,45	19007,82	19741,27	
57	Job 15	1	Machine 1	629,15	8974,899	9604,05	
58	Job 15	2	Machine 2	455,81	9604,05	10059,86	
59	Job 15	3	Machine 3	1268,29	19007,82	20276,11	
60	Job 15	4	Machine 4	733,45	20276,11	21009,56	
61	Job 16	1	Machine 1	11,12	0	11,12	
62	Job 16	2	Machine 2	9,56	11,12	20,68	
63	Job 16	3	Machine 3	53,62	20,68	74,3	
64	Job 16	4	Machine 4	8,2	74,3	82,5	
65	Job 17	1	Machine 1	11,12	11,12	22,24	
66	Job 17	2	Machine 2	9,56	22,24	31,8	
67	Job 17	3	Machine 3	53,62	74,3	127,92	
68	Job 17	4	Machine 4	8,2	127,92	136,12	
69	Job 18	1	Machine 1	11,12	22,24	33,36	
70	Job 18	2	Machine 2	9,56	33,36	42,92	
71	Job 18	3	Machine 3	53,62	127,92	181,54	
72	Job 18	4	Machine 4	8,2	181,54	189,74	
73	Job 19	1	Machine 1	11,12	33,36	44,48	
74	Job 19	2	Machine 2	9,56	44,48	54,04	
75	Job 19	3	Machine 3	53,62	181,54	235,16	
76	Job 19	4	Machine 4	8,2	235,16	243,36	
77	Job 20	1	Machine 1	11,12	44,48	55,6	
78	Job 20	2	Machine 2	9,56	55,6	65,16	
79	Job 20	3	Machine 3	53,62	235,16	288,78	
80	Job 20	4	Machine 4	8,2	288,78	296,98	
81	Job 21	1	Machine 1	11,12	55,6	66,72	
82	Job 21	2	Machine 2	9,56	66,72	76,28	

Lanjutan Tabel 4.16 Job scheduling terpilih dengan 15 batch

	Job Schedule							
	Job	Operation	On Machine	Process Time	Start Time	Finish Time		
83	Job 21	3	Machine 3	53,62	288,78	342,4		
84	Job 21	4	Machine 4	8,2	342,4	350,6		
85	Job 22	1	Machine 1	11,12	66,72	77,84		
86	Job 22	2	Machine 2	9,56	77,84	87,4		
87	Job 22	3	Machine 3	53,62	342,4	396,02		
88	Job 22	4	Machine 4	8,2	396,02	404,22		
89	Job 23	1	Machine 1	11,12	77,84	88,96		
90	Job 23	2	Machine 2	9,56	88,96	98,52		
91	Job 23	3	Machine 3	53,62	396,02	449,64		
92	Job 23	4	Machine 4	8,2	449,64	457,84		
93	Job 24	1	Machine 1	11,12	88,96	100,08		
94	Job 24	2	Machine 2	9,56	100,08	109,64		
95	Job 24	3	Machine 3	53,62	449,64	503,26		
96	Job 24	4	Machine 4	8,2	503,26	511,46		
97	Job 25	1	Machine 1	11,12	100,08	111,2		
98	Job 25	2	Machine 2	9,56	111,2	120,76		
99	Job 25	3	Machine 3	53,62	503,26	556,88		
100	Job 25	4	Machine 4	8,2	556,88	565,08		
101	Job 26	1	Machine 1	11,12	111,2	122,32		
102	Job 26	2	Machine 2	9,56	122,32	131,88		
103	Job 26	3	Machine 3	53,62	556,88	610,5		
104	Job 26	4	Machine 4	8,2	610,5	618,7		
105	Job 27	1	Machine 1	11,12	122,32	133,44		
106	Job 27	2	Machine 2	9,56	133,44	143		
107	Job 27	3	Machine 3	53,62	610,5	664,12		
108	Job 27	4	Machine 4	8,2	664,12	672,32		
109	Job 28	1	Machine 1	11,12	133,44	144,56		
110	Job 28	2	Machine 2	9,56	144,56	154,12		
111	Job 28	3	Machine 3	53,62	664,12	717,74		
112	Job 28	4	Machine 4	8,2	717,74	725,94		
113	Job 29	1	Machine 1	11,12	144,56	155,68		
114	Job 29	2	Machine 2	9,56	155,68	165,24		
115	Job 29	3	Machine 3	53,62	717,74	771,36		
116	Job 29	4	Machine 4	8,2	771,36	779,56		
117	Job 30	1	Machine 1	11,12	155,68	166,8		
118	Job 30	2	Machine 2	9,56	166,8	176,36		


Lanjutan Tabel 4.16 Job scheduling terpilih dengan 15 batch

	Job Schedule						
	Job	Operation	On Machine	Process Time	Start Time	Finish Time	
119	Job 30	3	Machine 3	53,62	771,36	824,98	
120	Job 30	4	Machine 4	8,2	824,98	833,18	
121	Job 31	1	Machine 1	390,72	9604,05	9994,77	
122	Job 31	2	Machine 2	379,11	10059,86	10438,97	
123	Job 31	3	Machine 3	549,96	20276,11	20826,07	
124	Job 31	4	Machine 4	64,02	21009,56	21073,58	
125	Job 32	1	Machine 1	390,72	9994,77	10385,49	
126	Job 32	2	Machine 2	379,11	10438,97	10818,08	
127	Job 32	3	Machine 3	549,96	20826,07	21376,03	
128	Job 32	4	Machine 4	64,02	21376,03	21440,05	
129	Job 33	1	Machine 1	390,72	10385,49	10776,21	
130	Job 33	2	Machine 2	379,11	10818,08	11197,19	
131	Job 33	3	Machine 3	549,96	21376,03	21925,99	
132	Job 33	4	Machine 4	64,02	21925,99	21990,01	
133	Job 34	1	Machine 1	390,72	10776,21	11166,93	
134	Job 34	2	Machine 2	379,11	11197,19	11576,3	
135	Job 34	3	Machine 3	549,96	21925,99	22475,95	
136	Job 34	4	Machine 4	64,02	22475,95	22539,97	
137	Job 35	1	Machine 1	390,72	11166,93	11557,65	
138	Job 35	2	Machine 2	379,11	11576,3	11955,41	
139	Job 35	3	Machine 3	549,96	22475,95	23025,91	
140	Job 35	4	Machine 4	64,02	23025,91	23089,93	
141	Job 36	1	Machine 1	390,72	11557,65	11948,37	
142	Job 36	2	Machine 2	379,11	11955,41	12334,52	
143	Job 36	3	Machine 3	549,96	23025,91	23575,88	
144	Job 36	4	Machine 4	64,02	23575,88	23639,89	
145	Job 37	1	Machine 1	390,72	11948,37	12339,09	
146	Job 37	2	Machine 2	379,11	12339,09	12718,2	
147	Job 37	3	Machine 3	549,96	23575,88	24125,84	
148	Job 37	4	Machine 4	64,02	24125,84	24189,86	
149	Job 38	1	Machine 1	390,72	12339,09	12729,81	
150	Job 38	2	Machine 2	379,11	12729,81	13108,92	
151	Job 38	3	Machine 3	549,96	24125,84	24675,8	
152	Job 38	4	Machine 4	64,02	24675,8	24739,82	
153	Job 39	1	Machine 1	390,72	12729,81	13120,53	
154	Job 39	2	Machine 2	379,11	13120,53	13499,64	

Lanjutan Tabel 4.16 *Job scheduling* terpilih dengan 15 batch

	Job Schedule							
	Job	Operation	On Machine	Process Time	Start Time	Finish Time		
155	Job 39	3	Machine 3	549,96	24675,8	25225,76		
156	Job 39	4	Machine 4	64,02	25225,76	25289,78		
157	Job 40	1	Machine 1	390,72	13120,53	13511,25		
158	Job 40	2	Machine 2	379,11	13511,25	13890,36		
159	Job 40	3	Machine 3	549,96	25225,76	25775,72		
160	Job 40	4	Machine 4	64,02	25775,72	25839,74		
161	Job 41	1	Machine 1	390,72	13511,25	13901,97		
162	Job 41	2	Machine 2	379,11	13901,97	14281,08		
163	Job 41	3	Machine 3	549,96	25775,72	26325,68		
164	Job 41	4	Machine 4	64,02	26325,68	26389,7		
165	Job 42	1	Machine 1	390,72	13901,97	14292,69		
166	Job 42	2	Machine 2	379,11	14292,69	14671,8		
167	Job 42	3	Machine 3	549,96	26325,68	26875,64		
168	Job 42	4	Machine 4	64,02	26875,64	26939,66		
169	Job 43	1	Machine 1	390,72	14292,69	14683,41		
170	Job 43	2	Machine 2	379,11	14683,41	15062,52		
171	Job 43	3	Machine 3	549,96	26875,64	27425,6		
172	Job 43	4	Machine 4	64,02	27425,6	27489,62		
173	Job 44	1	Machine 1	390,72	14683,41	15074,13		
174	Job 44	2	Machine 2	379,11	15074,13	15453,24		
175	Job 44	3	Machine 3	549,96	27425,6	27975,56		
176	Job 44	4	Machine 4	64,02	27975,56	28039,58		
177	Job 45	1	Machine 1	390,72	15074,13	15464,85		
178	Job 45	2	Machine 2	379,11	15464,85	15843,96		
179	Job 45	3	Machine 3	549,96	27975,56	28525,52		
180	Job 45	4	Machine 4	64,02	28525,52	28589,54		
	100		L/ "					
	Cmax =	28589,54	MC =	12447,14	Wmax =	27205,73		
	MW =	10929,47	Fmax =	28589,54	MF =	12447,14		
	Lmax =	28589,54	ML =	12447,14	Emax =	0		
	ME =	0	Tmax =	28589,54	MT =	12447,14		
	NT =	45	WIP =	19,5918	MU =	0,5972		
	TJC =	0	TMC =	0	TC =	0		
	Solved by	CDS	_		Criterion:	Cmax		

Adapun *gantt chart* dari hasil penjadwalan *batch* proses tidak sama dengan *batch* transfer dengan jumlah *batch* transfer sebesar 15 *batch* dapat dilihat pada gambar 4.5.

Gambar 4.5 Gantt chart job scheduling 15 batch